These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 24920162)

  • 1. Cold denaturation of α-synuclein amyloid fibrils.
    Ikenoue T; Lee YH; Kardos J; Saiki M; Yagi H; Kawata Y; Goto Y
    Angew Chem Int Ed Engl; 2014 Jul; 53(30):7799-804. PubMed ID: 24920162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein denaturation and aggregation: Cellular responses to denatured and aggregated proteins.
    Meredith SC
    Ann N Y Acad Sci; 2005 Dec; 1066():181-221. PubMed ID: 16533927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetically controlled thermal response of beta2-microglobulin amyloid fibrils.
    Sasahara K; Naiki H; Goto Y
    J Mol Biol; 2005 Sep; 352(3):700-11. PubMed ID: 16098535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissociation of amyloid fibrils of alpha-synuclein in supercooled water.
    Kim HY; Cho MK; Riedel D; Fernandez CO; Zweckstetter M
    Angew Chem Int Ed Engl; 2008; 47(27):5046-8. PubMed ID: 18521826
    [No Abstract]   [Full Text] [Related]  

  • 5. The thermodynamic stability of amyloid fibrils studied by differential scanning calorimetry.
    Morel B; Varela L; Conejero-Lara F
    J Phys Chem B; 2010 Mar; 114(11):4010-9. PubMed ID: 20199038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct measurement of the thermodynamic parameters of amyloid formation by isothermal titration calorimetry.
    Kardos J; Yamamoto K; Hasegawa K; Naiki H; Goto Y
    J Biol Chem; 2004 Dec; 279(53):55308-14. PubMed ID: 15494406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible heat-induced dissociation of β2-microglobulin amyloid fibrils.
    Kardos J; Micsonai A; Pál-Gábor H; Petrik É; Gráf L; Kovács J; Lee YH; Naiki H; Goto Y
    Biochemistry; 2011 Apr; 50(15):3211-20. PubMed ID: 21388222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation of amyloid fibril beta-structure with the unfolded state of alpha-synuclein.
    Kim HY; Heise H; Fernandez CO; Baldus M; Zweckstetter M
    Chembiochem; 2007 Sep; 8(14):1671-4. PubMed ID: 17722123
    [No Abstract]   [Full Text] [Related]  

  • 9. Thioflavin T-Silent Denaturation Intermediates Support the Main-Chain-Dominated Architecture of Amyloid Fibrils.
    Noda S; So M; Adachi M; Kardos J; Akazawa-Ogawa Y; Hagihara Y; Goto Y
    Biochemistry; 2016 Jul; 55(28):3937-48. PubMed ID: 27345358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fold preference and thermodynamic stability of α-synuclein fibrils is encoded in the non-amyloid-β component region.
    Xu L; Bhattacharya S; Thompson D
    Phys Chem Chem Phys; 2018 Feb; 20(6):4502-4512. PubMed ID: 29372732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Main-chain dominated amyloid structures demonstrated by the effect of high pressure.
    Chatani E; Kato M; Kawai T; Naiki H; Goto Y
    J Mol Biol; 2005 Sep; 352(4):941-51. PubMed ID: 16122756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies of the aggregation of an amyloidogenic alpha-synuclein peptide fragment.
    Madine J; Doig AJ; Kitmitto A; Middleton DA
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):1113-5. PubMed ID: 16246058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural stability of amyloid fibrils of beta(2)-microglobulin in comparison with its native fold.
    Chatani E; Goto Y
    Biochim Biophys Acta; 2005 Nov; 1753(1):64-75. PubMed ID: 16213801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fold of alpha-synuclein fibrils.
    Vilar M; Chou HT; Lührs T; Maji SK; Riek-Loher D; Verel R; Manning G; Stahlberg H; Riek R
    Proc Natl Acad Sci U S A; 2008 Jun; 105(25):8637-42. PubMed ID: 18550842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AlphaB-crystallin, a small heat-shock protein, prevents the amyloid fibril growth of an amyloid beta-peptide and beta2-microglobulin.
    Raman B; Ban T; Sakai M; Pasta SY; Ramakrishna T; Naiki H; Goto Y; Rao ChM
    Biochem J; 2005 Dec; 392(Pt 3):573-81. PubMed ID: 16053447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of the molecular chaperone alphaB-crystallin with alpha-synuclein: effects on amyloid fibril formation and chaperone activity.
    Rekas A; Adda CG; Andrew Aquilina J; Barnham KJ; Sunde M; Galatis D; Williamson NA; Masters CL; Anders RF; Robinson CV; Cappai R; Carver JA
    J Mol Biol; 2004 Jul; 340(5):1167-83. PubMed ID: 15236975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the acidic domain of α-synuclein in amyloid fibril formation: a molecular dynamics study.
    Park S; Yoon J; Jang S; Lee K; Shin S
    J Biomol Struct Dyn; 2016; 34(2):376-83. PubMed ID: 25869255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fibrils with parallel in-register structure constitute a major class of amyloid fibrils: molecular insights from electron paramagnetic resonance spectroscopy.
    Margittai M; Langen R
    Q Rev Biophys; 2008; 41(3-4):265-97. PubMed ID: 19079806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of different regions of alpha-synuclein in the assembly of fibrils.
    Qin Z; Hu D; Han S; Hong DP; Fink AL
    Biochemistry; 2007 Nov; 46(46):13322-30. PubMed ID: 17963364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The monomer-seed interaction mechanism in the formation of the β2-microglobulin amyloid fibril clarified by solution NMR techniques.
    Yanagi K; Sakurai K; Yoshimura Y; Konuma T; Lee YH; Sugase K; Ikegami T; Naiki H; Goto Y
    J Mol Biol; 2012 Sep; 422(3):390-402. PubMed ID: 22683352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.