These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
408 related articles for article (PubMed ID: 24920187)
1. Changes in the distribution of multispecies pest assemblages affect levels of crop damage in warming tropical Andes. Crespo-Pérez V; Régnière J; Chuine I; Rebaudo F; Dangles O Glob Chang Biol; 2015 Jan; 21(1):82-96. PubMed ID: 24920187 [TBL] [Abstract][Full Text] [Related]
2. Temperature as a key driver of ecological sorting among invasive pest species in the tropical Andes. Dangles O; Carpio C; Barragan AR; Zeddam JL; Silvain JF Ecol Appl; 2008 Oct; 18(7):1795-809. PubMed ID: 18839773 [TBL] [Abstract][Full Text] [Related]
3. Modeling temperature-dependent survival with small datasets: insights from tropical mountain agricultural pests. Crespo-Pérez V; Dangles O; Régnière J; Chuine I Bull Entomol Res; 2013 Jun; 103(3):336-43. PubMed ID: 23448173 [TBL] [Abstract][Full Text] [Related]
4. Range-expanding pests and pathogens in a warming world. Bebber DP Annu Rev Phytopathol; 2015; 53():335-56. PubMed ID: 26047565 [TBL] [Abstract][Full Text] [Related]
5. Attract-and-kill as a new strategy for the management of the potato tuber moths Phthorimaea operculella (Zeller) and Symmetrischema tangolias (Gyen) in potato: evaluation of its efficacy under potato field and storage conditions. Kroschel J; Zegarra O Pest Manag Sci; 2013 Nov; 69(11):1205-15. PubMed ID: 23456914 [TBL] [Abstract][Full Text] [Related]
6. The enemy as ally: herbivore-induced increase in crop yield. Poveda K; Jímenez MI; Kessler A Ecol Appl; 2010 Oct; 20(7):1787-93. PubMed ID: 21049868 [TBL] [Abstract][Full Text] [Related]
7. Development of a viral biopesticide for the control of the Guatemala potato tuber moth Tecia solanivora. Carpio C; Dangles O; Dupas S; Léry X; López-Ferber M; Orbe K; Páez D; Rebaudo F; Santillán A; Yangari B; Zeddam JL J Invertebr Pathol; 2013 Feb; 112(2):184-91. PubMed ID: 23232473 [TBL] [Abstract][Full Text] [Related]
8. Seasonal Population Dynamics of Three Potato Pests in Washington State. D'Auria EM; Wohleb CH; Waters TD; Crowder DW Environ Entomol; 2016 Aug; 45(4):781-9. PubMed ID: 27271946 [TBL] [Abstract][Full Text] [Related]
9. Effect of temperature on the phenology of Chilo partellus (Swinhoe) (Lepidoptera, Crambidae); simulation and visualization of the potential future distribution of C. partellus in Africa under warmer temperatures through the development of life-table parameters. Khadioli N; Tonnang ZE; Muchugu E; Ong'amo G; Achia T; Kipchirchir I; Kroschel J; Le Ru B Bull Entomol Res; 2014 Dec; 104(6):809-22. PubMed ID: 25229840 [TBL] [Abstract][Full Text] [Related]
10. Integrating pests and pathogens into the climate change/food security debate. Gregory PJ; Johnson SN; Newton AC; Ingram JS J Exp Bot; 2009; 60(10):2827-38. PubMed ID: 19380424 [TBL] [Abstract][Full Text] [Related]
11. Life histories and fitness of two tuber moth species feeding on native Andean potatoes. Horgan FG; Quiring DT; Lagnaoui A; Pelletier Y Neotrop Entomol; 2012 Aug; 41(4):333-40. PubMed ID: 23950070 [TBL] [Abstract][Full Text] [Related]
12. Projecting the current and future potential global distribution of Hyphantria cunea (Lepidoptera: Arctiidae) using CLIMEX. Ge X; He S; Zhu C; Wang T; Xu Z; Zong S Pest Manag Sci; 2019 Jan; 75(1):160-169. PubMed ID: 29797397 [TBL] [Abstract][Full Text] [Related]
13. Determination of areas with the most significant shift in persistence of pests in Europe under climate change. Svobodová E; Trnka M; Dubrovský M; Semerádová D; Eitzinger J; Stěpánek P; Zalud Z Pest Manag Sci; 2014 May; 70(5):708-15. PubMed ID: 23901033 [TBL] [Abstract][Full Text] [Related]
14. Emerging New Crop Pests: Ecological Modelling and Analysis of the South American Potato Psyllid Russelliana solanicola (Hemiptera: Psylloidea) and Its Wild Relatives. Syfert MM; Serbina L; Burckhardt D; Knapp S; Percy DM PLoS One; 2017; 12(1):e0167764. PubMed ID: 28052088 [TBL] [Abstract][Full Text] [Related]
15. Climate change and biological invasions: evidence, expectations, and response options. Hulme PE Biol Rev Camb Philos Soc; 2017 Aug; 92(3):1297-1313. PubMed ID: 27241717 [TBL] [Abstract][Full Text] [Related]
16. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species. Overgaard J; Kearney MR; Hoffmann AA Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716 [TBL] [Abstract][Full Text] [Related]
17. Current temporal trends in moth abundance are counter to predicted effects of climate change in an assemblage of subarctic forest moths. Hunter MD; Kozlov MV; Itämies J; Pulliainen E; Bäck J; Kyrö EM; Niemelä P Glob Chang Biol; 2014 Jun; 20(6):1723-37. PubMed ID: 24421221 [TBL] [Abstract][Full Text] [Related]
18. Modelling the effects of climate change on the distribution and production of marine fishes: accounting for trophic interactions in a dynamic bioclimate envelope model. Fernandes JA; Cheung WW; Jennings S; Butenschön M; de Mora L; Frölicher TL; Barange M; Grant A Glob Chang Biol; 2013 Aug; 19(8):2596-607. PubMed ID: 23625663 [TBL] [Abstract][Full Text] [Related]
19. Epitrix flea beetles: new threats to potato production in Europe. Eyre D; Giltrap N Pest Manag Sci; 2013 Jan; 69(1):3-6. PubMed ID: 23169596 [TBL] [Abstract][Full Text] [Related]
20. Population Trends of Central European Montane Birds Provide Evidence for Adverse Impacts of Climate Change on High-Altitude Species. Flousek J; Telenský T; Hanzelka J; Reif J PLoS One; 2015; 10(10):e0139465. PubMed ID: 26426901 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]