These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 24920223)

  • 1. Inner structure of adsorbed ionic microgel particles.
    Wellert S; Hertle Y; Richter M; Medebach M; Magerl D; Wang W; Demé B; Radulescu A; Müller-Buschbaum P; Hellweg T; von Klitzing R
    Langmuir; 2014 Jun; 30(24):7168-76. PubMed ID: 24920223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density profiles of temperature-sensitive microgel particles.
    Mason TG; Lin MY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 1):040801. PubMed ID: 15903650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small-angle neutron scattering study of temperature-induced emulsion gelation: the role of sticky microgel particles.
    Koh AY; Saunders BR
    Langmuir; 2005 Jul; 21(15):6734-41. PubMed ID: 16008382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale Mechanical Properties of Core-Shell-like Poly-NIPAm Microgel Particles: Effect of Temperature and Cross-Linking Density.
    Li G; Varga I; Kardos A; Dobryden I; Claesson PM
    J Phys Chem B; 2021 Sep; 125(34):9860-9869. PubMed ID: 34428041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the structure of poly(N-isopropylacrylamide) microgel particles.
    Saunders BR
    Langmuir; 2004 May; 20(10):3925-32. PubMed ID: 15969381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-stimuli-sensitive microgels as a tool for stimulated spongelike adsorption of biomaterials for biosensor applications.
    Sigolaeva LV; Gladyr SY; Gelissen AP; Mergel O; Pergushov DV; Kurochkin IN; Plamper FA; Richtering W
    Biomacromolecules; 2014 Oct; 15(10):3735-45. PubMed ID: 25211008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring the internal structure of poly(N-vinylcaprolactam) microgels with variable cross-link concentration.
    Schneider F; Balaceanu A; Feoktystov A; Pipich V; Wu Y; Allgaier J; Pyckhout-Hintzen W; Pich A; Schneider GJ
    Langmuir; 2014 Dec; 30(50):15317-26. PubMed ID: 25493607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absorption of cetylpyridinium chloride into poly(N-isopropylacrylamide)-based microgel particles, in dispersion and as surface-deposited monolayers.
    Nerapusri V; Keddie JL; Vincent B; Bushnak IA
    Langmuir; 2007 Sep; 23(19):9572-7. PubMed ID: 17685638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Swelling and deswelling of adsorbed microgel monolayers triggered by changes in temperature, pH, and electrolyte concentration.
    Nerapusri V; Keddie JL; Vincent B; Bushnak IA
    Langmuir; 2006 May; 22(11):5036-41. PubMed ID: 16700591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-pH sensitivity of bovine serum albumin protein-microgels based on cross-linked poly(N-isopropylacrylamide-co-acrylic acid).
    Huo D; Li Y; Qian Q; Kobayashi T
    Colloids Surf B Biointerfaces; 2006 Jun; 50(1):36-42. PubMed ID: 16698239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small-angle neutron scattering study of structural changes in temperature sensitive microgel colloids.
    Stieger M; Richtering W; Pedersen JS; Lindner P
    J Chem Phys; 2004 Apr; 120(13):6197-206. PubMed ID: 15267506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unperturbed volume transition of thermosensitive poly-(N-isopropylacrylamide) microgel particles embedded in a hydrogel matrix.
    Musch J; Schneider S; Lindner P; Richtering W
    J Phys Chem B; 2008 May; 112(20):6309-14. PubMed ID: 18444673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural properties of thermoresponsive poly(N-isopropylacrylamide)-poly(ethyleneglycol) microgels.
    Clara-Rahola J; Fernandez-Nieves A; Sierra-Martin B; South AB; Lyon LA; Kohlbrecher J; Fernandez Barbero A
    J Chem Phys; 2012 Jun; 136(21):214903. PubMed ID: 22697568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are thermoresponsive microgels model systems for concentrated colloidal suspensions? A rheology and small-angle neutron scattering study.
    Stieger M; Pedersen JS; Lindner P; Richtering W
    Langmuir; 2004 Aug; 20(17):7283-92. PubMed ID: 15301516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and polymer dynamics within PNIPAM-based microgel particles.
    Sierra-Martin B; Rubio Retama J; Laurenti M; Fernández Barbero A; López Cabarcos E
    Adv Colloid Interface Sci; 2014 Mar; 205():113-23. PubMed ID: 24275613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and properties of polyelectrolyte microgel particles.
    Nur H; Pinkrah VT; Mitchell JC; Benée LS; Snowden MJ
    Adv Colloid Interface Sci; 2010 Jul; 158(1-2):15-20. PubMed ID: 19712922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and dynamics of a thermoresponsive microgel around its volume phase transition temperature.
    Ghugare SV; Chiessi E; Telling MT; Deriu A; Gerelli Y; Wuttke J; Paradossi G
    J Phys Chem B; 2010 Aug; 114(32):10285-93. PubMed ID: 20701364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-Dependent Nanomechanical Properties of Adsorbed Poly-NIPAm Microgel Particles Immersed in Water.
    Li G; Varga I; Kardos A; Dobryden I; Claesson PM
    Langmuir; 2021 Feb; 37(5):1902-1912. PubMed ID: 33502872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH-induced deswelling kinetics of sterically stabilized poly(2-vinylpyridine) microgels probed by stopped-flow light scattering.
    Yin J; Dupin D; Li J; Armes SP; Liu S
    Langmuir; 2008 Sep; 24(17):9334-40. PubMed ID: 18642939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Equilibrium and kinetic aspects of the uptake of poly(ethylene oxide) by copolymer microgel particles of N-isopropylacrylamide and acrylic acid.
    Bradley M; Ramos J; Vincent B
    Langmuir; 2005 Feb; 21(4):1209-15. PubMed ID: 15697262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.