These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 24920357)

  • 21. Structural features of small RNA precursors determine Argonaute loading in Caenorhabditis elegans.
    Steiner FA; Hoogstrate SW; Okihara KL; Thijssen KL; Ketting RF; Plasterk RH; Sijen T
    Nat Struct Mol Biol; 2007 Oct; 14(10):927-33. PubMed ID: 17891148
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Post-transcriptional gene silencing by siRNAs and miRNAs.
    Filipowicz W; Jaskiewicz L; Kolb FA; Pillai RS
    Curr Opin Struct Biol; 2005 Jun; 15(3):331-41. PubMed ID: 15925505
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expressing functional siRNAs in mammalian cells using convergent transcription.
    Tran N; Cairns MJ; Dawes IW; Arndt GM
    BMC Biotechnol; 2003 Nov; 3():21. PubMed ID: 14604435
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rational design and in vitro and in vivo delivery of Dicer substrate siRNA.
    Amarzguioui M; Lundberg P; Cantin E; Hagstrom J; Behlke MA; Rossi JJ
    Nat Protoc; 2006; 1(2):508-17. PubMed ID: 17406276
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Absence of non-specific effects of RNA interference triggered by long double-stranded RNA in mouse oocytes.
    Stein P; Zeng F; Pan H; Schultz RM
    Dev Biol; 2005 Oct; 286(2):464-71. PubMed ID: 16154556
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal.
    Dunoyer P; Himber C; Voinnet O
    Nat Genet; 2005 Dec; 37(12):1356-60. PubMed ID: 16273107
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expression of Caenorhabditis elegans neurotransmitter receptors and ion channels in Xenopus oocytes.
    Martínez-Torres A; Miledi R
    Proc Natl Acad Sci U S A; 2006 Mar; 103(13):5120-4. PubMed ID: 16549772
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RNAi in Xenopus: look before you leap.
    Flynt AS; Lai EC
    Genes Dev; 2011 Jun; 25(11):1105-8. PubMed ID: 21632820
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Labeling strategy and signal broadening mechanism of Protein NMR spectroscopy in Xenopus laevis oocytes.
    Ye Y; Liu X; Chen Y; Xu G; Wu Q; Zhang Z; Yao C; Liu M; Li C
    Chemistry; 2015 Jun; 21(24):8686-90. PubMed ID: 25965532
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Small but mighty RNA-mediated interference in plants.
    Pattanayak D; Agarwal S; Sumathi S; Chakrabarti SK; Naik PS; Khurana SM
    Indian J Exp Biol; 2005 Jan; 43(1):7-24. PubMed ID: 15691061
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extraction and nonradioactive detection of small RNA molecules.
    Carlile M; Werner A
    Methods Mol Biol; 2014; 1173():89-98. PubMed ID: 24920362
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The small non-coding RNA profile of mouse oocytes is modified during aging.
    Mihalas BP; Camlin NJ; Xavier MJ; Peters AE; Holt JE; Sutherland JM; McLaughlin EA; Eamens AL; Nixon B
    Aging (Albany NY); 2019 May; 11(10):2968-2997. PubMed ID: 31128574
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RNA interference in mammalian systems--a practical approach.
    Grabarek JB; Zernicka-Goetz M
    Adv Exp Med Biol; 2003; 544():205-16. PubMed ID: 14713230
    [No Abstract]   [Full Text] [Related]  

  • 34. Altered phenotypes via graft-transmitted siRNAs.
    McCormick S
    Plant J; 2018 Oct; 96(1):3-4. PubMed ID: 30240544
    [No Abstract]   [Full Text] [Related]  

  • 35. Transpositional shuffling and quality control in male germ cells to enhance evolution of complex organisms.
    Werner A; Piatek MJ; Mattick JS
    Ann N Y Acad Sci; 2015 Apr; 1341(1):156-63. PubMed ID: 25557795
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generation of endo-siRNAs in Xenopus laevis oocytes.
    Alnumeir S; Werner A
    Methods Mol Biol; 2014; 1173():27-32. PubMed ID: 24920357
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In silico identification of novel endo-siRNAs.
    Schuster A; Hennig GW; Ortogero N; Luong D; Yan W
    Methods Mol Biol; 2015; 1218():341-51. PubMed ID: 25319662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes.
    Watanabe T; Totoki Y; Toyoda A; Kaneda M; Kuramochi-Miyagawa S; Obata Y; Chiba H; Kohara Y; Kono T; Nakano T; Surani MA; Sakaki Y; Sasaki H
    Nature; 2008 May; 453(7194):539-43. PubMed ID: 18404146
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microarray analysis of Drosophila dicer-2 mutants reveals potential regulation of mitochondrial metabolism by endogenous siRNAs.
    Lim DH; Lee L; Oh CT; Kim NH; Hwang S; Han SJ; Lee YS
    J Cell Biochem; 2013 Feb; 114(2):418-27. PubMed ID: 22961661
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An inside job for siRNAs.
    Golden DE; Gerbasi VR; Sontheimer EJ
    Mol Cell; 2008 Aug; 31(3):309-12. PubMed ID: 18691963
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.