These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 24920412)

  • 21. Direct inhibition of methanogenesis by ferric iron.
    Bodegom PM; Scholten JC; Stams AJ
    FEMS Microbiol Ecol; 2004 Aug; 49(2):261-8. PubMed ID: 19712419
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Energy Conservation and Hydrogenase Function in Methanogenic Archaea, in Particular the Genus
    Mand TD; Metcalf WW
    Microbiol Mol Biol Rev; 2019 Nov; 83(4):. PubMed ID: 31533962
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancement of methanogenesis by electric syntrophy with biogenic iron-sulfide minerals.
    Kato S; Igarashi K
    Microbiologyopen; 2019 Mar; 8(3):e00647. PubMed ID: 29877051
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of amendment with ferrihydrite and gypsum on the structure and activity of methanogenic populations in rice field soil.
    Lueders T; Friedrich MW
    Appl Environ Microbiol; 2002 May; 68(5):2484-94. PubMed ID: 11976125
    [TBL] [Abstract][Full Text] [Related]  

  • 25. iTRAQ quantitative proteomic analysis reveals the pathways for methanation of propionate facilitated by magnetite.
    Jing Y; Wan J; Angelidaki I; Zhang S; Luo G
    Water Res; 2017 Jan; 108():212-221. PubMed ID: 27817893
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones.
    Bond DR; Lovley DR
    Environ Microbiol; 2002 Feb; 4(2):115-24. PubMed ID: 11972621
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Syntrophic degradation of proteinaceous materials by the thermophilic strains Coprothermobacter proteolyticus and Methanothermobacter thermautotrophicus.
    Sasaki K; Morita M; Sasaki D; Nagaoka J; Matsumoto N; Ohmura N; Shinozaki H
    J Biosci Bioeng; 2011 Nov; 112(5):469-72. PubMed ID: 21802987
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Methanogens rapidly transition from methane production to iron reduction.
    Sivan O; Shusta SS; Valentine DL
    Geobiology; 2016 Mar; 14(2):190-203. PubMed ID: 26762691
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog.
    Kotsyurbenko OR; Chin KJ; Glagolev MV; Stubner S; Simankova MV; Nozhevnikova AN; Conrad R
    Environ Microbiol; 2004 Nov; 6(11):1159-73. PubMed ID: 15479249
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Methanosaeta, the forgotten methanogen?
    Smith KS; Ingram-Smith C
    Trends Microbiol; 2007 Apr; 15(4):150-5. PubMed ID: 17320399
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formation of Zerovalent Iron in Iron-Reducing Cultures of
    Shang H; Daye M; Sivan O; Borlina CS; Tamura N; Weiss BP; Bosak T
    Environ Sci Technol; 2020 Jun; 54(12):7354-7365. PubMed ID: 32379434
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Methanosarcina as the dominant aceticlastic methanogens during mesophilic anaerobic digestion of putrescible waste.
    Vavilin VA; Qu X; Mazéas L; Lemunier M; Duquennoi C; He P; Bouchez T
    Antonie Van Leeuwenhoek; 2008 Nov; 94(4):593-605. PubMed ID: 18791805
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite.
    Ehlert K; Mikutta C; Kretzschmar R
    Environ Sci Technol; 2014 Oct; 48(19):11320-9. PubMed ID: 25243611
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control the greenhouse gas emission via mediating the dissimilatory iron reduction: Fulvic acid inhibit secondary mineralization of ferrihydrite.
    Wang M; Zhao Z; Li Y; Liang S; Meng Y; Ren T; Zhang X; Zhang Y
    Water Res; 2022 Jun; 218():118501. PubMed ID: 35523036
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diversity and ubiquity of thermophilic methanogenic archaea in temperate anoxic soils.
    Wu XL; Friedrich MW; Conrad R
    Environ Microbiol; 2006 Mar; 8(3):394-404. PubMed ID: 16478446
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative detection of culturable methanogenic archaea abundance in anaerobic treatment systems using the sequence-specific rRNA cleavage method.
    Narihiro T; Terada T; Ohashi A; Wu JH; Liu WT; Araki N; Kamagata Y; Nakamura K; Sekiguchi Y
    ISME J; 2009 May; 3(5):522-35. PubMed ID: 19212429
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Competition of Fe(III) reduction and methanogenesis in an acidic fen.
    Reiche M; Torburg G; Küsel K
    FEMS Microbiol Ecol; 2008 Jul; 65(1):88-101. PubMed ID: 18559015
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester.
    Hori T; Haruta S; Ueno Y; Ishii M; Igarashi Y
    Appl Environ Microbiol; 2006 Feb; 72(2):1623-30. PubMed ID: 16461718
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dissimilatory Fe(III) and Mn(IV) reduction.
    Lovley DR; Holmes DE; Nevin KP
    Adv Microb Physiol; 2004; 49():219-86. PubMed ID: 15518832
    [TBL] [Abstract][Full Text] [Related]  

  • 40. XAS and XMCD evidence for species-dependent partitioning of arsenic during microbial reduction of ferrihydrite to magnetite.
    Coker VS; Gault AG; Pearce CI; van der Laan G; Telling ND; Charnock JM; Polya DA; Lloyd JR
    Environ Sci Technol; 2006 Dec; 40(24):7745-50. PubMed ID: 17256522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.