These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 24920530)

  • 1. Identification of drug-induced myocardial infarction-related protein targets through the prediction of drug-target interactions and analysis of biological processes.
    Ivanov SM; Lagunin AA; Pogodin PV; Filimonov DA; Poroikov VV
    Chem Res Toxicol; 2014 Jul; 27(7):1263-81. PubMed ID: 24920530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of drug targets related to the induction of ventricular tachyarrhythmia through a systems chemical biology approach.
    Ivanov SM; Lagunin AA; Pogodin PV; Filimonov DA; Poroikov VV
    Toxicol Sci; 2015 Jun; 145(2):321-36. PubMed ID: 25766883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systems analysis of gene ontology and biological pathways involved in post-myocardial infarction responses.
    Nguyen NT; Lindsey ML; Jin YF
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S18. PubMed ID: 26100218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug-target interaction prediction by random walk on the heterogeneous network.
    Chen X; Liu MX; Yan GY
    Mol Biosyst; 2012 Jul; 8(7):1970-8. PubMed ID: 22538619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Silico Identification of Proteins Associated with Drug-induced Liver Injury Based on the Prediction of Drug-target Interactions.
    Ivanov S; Semin M; Lagunin A; Filimonov D; Poroikov V
    Mol Inform; 2017 Jul; 36(7):. PubMed ID: 28145637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug-domain interaction networks in myocardial infarction.
    Wang H; Zheng H; Azuaje F; Zhao XM
    IEEE Trans Nanobioscience; 2013 Sep; 12(3):182-8. PubMed ID: 23974657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale identification of adverse drug reaction-related proteins through a random walk model.
    Chen X; Shi H; Yang F; Yang L; Lv Y; Wang S; Dai E; Sun D; Jiang W
    Sci Rep; 2016 Nov; 6():36325. PubMed ID: 27805066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical-protein interactome and its application in off-target identification.
    Yang L; Wang KJ; Wang LS; Jegga AG; Qin SY; He G; Chen J; Xiao Y; He L
    Interdiscip Sci; 2011 Mar; 3(1):22-30. PubMed ID: 21369884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput identification of off-targets for the mechanistic study of severe adverse drug reactions induced by analgesics.
    Pan JB; Ji N; Pan W; Hong R; Wang H; Ji ZL
    Toxicol Appl Pharmacol; 2014 Jan; 274(1):24-34. PubMed ID: 24176876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational studies on Alzheimer's disease associated pathways and regulatory patterns using microarray gene expression and network data: revealed association with aging and other diseases.
    Panigrahi PP; Singh TR
    J Theor Biol; 2013 Oct; 334():109-21. PubMed ID: 23811083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Illuminating drug action by network integration of disease genes: a case study of myocardial infarction.
    Wang RS; Loscalzo J
    Mol Biosyst; 2016 Apr; 12(5):1653-66. PubMed ID: 27004607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational prediction of drug-drug interactions based on drugs functional similarities.
    Ferdousi R; Safdari R; Omidi Y
    J Biomed Inform; 2017 Jun; 70():54-64. PubMed ID: 28465082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug-target network in myocardial infarction reveals multiple side effects of unrelated drugs.
    Azuaje FJ; Zhang L; Devaux Y; Wagner DR
    Sci Rep; 2011; 1():52. PubMed ID: 22355571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adverse drug reaction prediction using scores produced by large-scale drug-protein target docking on high-performance computing machines.
    LaBute MX; Zhang X; Lenderman J; Bennion BJ; Wong SE; Lightstone FC
    PLoS One; 2014; 9(9):e106298. PubMed ID: 25191698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting drug targets based on protein domains.
    Wang YY; Nacher JC; Zhao XM
    Mol Biosyst; 2012 Apr; 8(5):1528-34. PubMed ID: 22402667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of adverse drug reactions using drug and drug target interactions and graph-based methods.
    Lin SF; Xiao KT; Huang YT; Chiu CC; Soo VW
    Artif Intell Med; 2010; 48(2-3):161-6. PubMed ID: 19962282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of microRNA-regulated protein interaction pathways in Arabidopsis using machine learning algorithms.
    Kurubanjerdjit N; Huang CH; Lee YL; Tsai JJ; Ng KL
    Comput Biol Med; 2013 Nov; 43(11):1645-52. PubMed ID: 24209909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of human protein complexes from local sub-graphs of protein-protein interaction network based on random forest with topological structure features.
    Li ZC; Lai YH; Chen LL; Zhou X; Dai Z; Zou XY
    Anal Chim Acta; 2012 Mar; 718():32-41. PubMed ID: 22305895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Network-based characterization of drug-regulated genes, drug targets, and toxicity.
    Kotlyar M; Fortney K; Jurisica I
    Methods; 2012 Aug; 57(4):499-507. PubMed ID: 22749929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.