These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 24920598)

  • 1. High-power lithium-ion capacitor using LiMnBO3 -nanobead anode and polyaniline-nanofiber cathode with excellent cycle life.
    Karthikeyan K; Amaresh S; Lee SN; An JY; Lee YS
    ChemSusChem; 2014 Aug; 7(8):2310-6. PubMed ID: 24920598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LiMnBO₃ nanobeads as an innovative anode material for high power lithium ion capacitor applications.
    Kaliyappan K; Amaresh S; Lee YS
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11357-67. PubMed ID: 24910890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unveiling TiNb2 O7 as an insertion anode for lithium ion capacitors with high energy and power density.
    Aravindan V; Sundaramurthy J; Jain A; Kumar PS; Ling WC; Ramakrishna S; Srinivasan MP; Madhavi S
    ChemSusChem; 2014 Jul; 7(7):1858-63. PubMed ID: 24961606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel strategy to construct high performance lithium-ion cells using one dimensional electrospun nanofibers, electrodes and separators.
    Aravindan V; Sundaramurthy J; Kumar PS; Shubha N; Ling WC; Ramakrishna S; Madhavi S
    Nanoscale; 2013 Nov; 5(21):10636-45. PubMed ID: 24057339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fibrous polyaniline@manganese oxide nanocomposites as supercapacitor electrode materials and cathode catalysts for improved power production in microbial fuel cells.
    Ansari SA; Parveen N; Han TH; Ansari MO; Cho MH
    Phys Chem Chem Phys; 2016 Apr; 18(13):9053-60. PubMed ID: 26967202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphologically robust NiFe2O4 nanofibers as high capacity Li-ion battery anode material.
    Cherian CT; Sundaramurthy J; Reddy MV; Suresh Kumar P; Mani K; Pliszka D; Sow CH; Ramakrishna S; Chowdari BV
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):9957-63. PubMed ID: 24099146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films.
    Wu Q; Xu Y; Yao Z; Liu A; Shi G
    ACS Nano; 2010 Apr; 4(4):1963-70. PubMed ID: 20355733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile synthesis of electrospun Li(1.2)Ni(0.17)Co(0.17)Mn(0.5)O2 nanofiber and its enhanced high-rate performance for lithium-ion battery applications.
    Min JW; Yim CJ; Im WB
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7765-9. PubMed ID: 23905782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lithium-ion transport through a tailored disordered phase on the LiNi0.5 Mn1.5 O4 surface for high-power cathode materials.
    Jo MR; Kim YI; Kim Y; Chae JS; Roh KC; Yoon WS; Kang YM
    ChemSusChem; 2014 Aug; 7(8):2248-54. PubMed ID: 24924807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacial characteristics of a PEGylated imidazolium bistriflamide ionic liquid electrolyte at a lithium ion battery cathode of LiMn2O4.
    Rock SE; Wu L; Crain DJ; Krishnan S; Roy D
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2075-84. PubMed ID: 23432452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrolyte Mixtures Based on Ethylene Carbonate and Dimethyl Sulfone for Li-Ion Batteries with Improved Safety Characteristics.
    Hofmann A; Migeot M; Thißen E; Schulz M; Heinzmann R; Indris S; Bergfeldt T; Lei B; Ziebert C; Hanemann T
    ChemSusChem; 2015 Jun; 8(11):1892-900. PubMed ID: 25950145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Self-Standing Binder-Free Biomimetic Cathode Based on LMO/CNT Enhanced with Graphene and PANI for Aqueous Rechargeable Batteries.
    Bubulinca C; Sapurina I; Kazantseva NE; Pechancova V; Saha P
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchically porous carbon with manganese oxides as highly efficient electrode for asymmetric supercapacitors.
    Chou TC; Doong RA; Hu CC; Zhang B; Su DS
    ChemSusChem; 2014 Mar; 7(3):841-7. PubMed ID: 24504702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors.
    Sarker AK; Hong JD
    Langmuir; 2012 Aug; 28(34):12637-46. PubMed ID: 22866750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MoO2-ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery.
    Chen A; Li C; Tang R; Yin L; Qi Y
    Phys Chem Chem Phys; 2013 Aug; 15(32):13601-10. PubMed ID: 23832242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave-assisted chemical-vapor-induced in situ polymerization of polyaniline nanofibers on graphite electrode for high-performance supercapacitor.
    Li X; Yang L; Lei Y; Gu L; Xiao D
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19978-89. PubMed ID: 25361469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale synthesis of reduced graphene oxides with uniformly coated polyaniline for supercapacitor applications.
    Salunkhe RR; Hsu SH; Wu KC; Yamauchi Y
    ChemSusChem; 2014 Jun; 7(6):1551-6. PubMed ID: 24850493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high performance hybrid capacitor with Li2CoPO4F cathode and activated carbon anode.
    Karthikeyan K; Amaresh S; Kim KJ; Kim SH; Chung KY; Cho BW; Lee YS
    Nanoscale; 2013 Jul; 5(13):5958-64. PubMed ID: 23708774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene oxide-supported carbon nanofiber-like network derived from polyaniline: A novel composite for enhanced glucose oxidase bioelectrode performance.
    Kang Z; Jiao K; Xu X; Peng R; Jiao S; Hu Z
    Biosens Bioelectron; 2017 Oct; 96():367-372. PubMed ID: 28535471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bifunctional Manganese Ferrite/Polyaniline Hybrid as Electrode Material for Enhanced Energy Recovery in Microbial Fuel Cell.
    Khilari S; Pandit S; Varanasi JL; Das D; Pradhan D
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20657-66. PubMed ID: 26315619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.