These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 24920615)

  • 41. How the human brain recognizes speech in the context of changing speakers.
    von Kriegstein K; Smith DR; Patterson RD; Kiebel SJ; Griffiths TD
    J Neurosci; 2010 Jan; 30(2):629-38. PubMed ID: 20071527
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The neurophysiological bases of emotion: An fMRI study of the affective circumplex using emotion-denoting words.
    Posner J; Russell JA; Gerber A; Gorman D; Colibazzi T; Yu S; Wang Z; Kangarlu A; Zhu H; Peterson BS
    Hum Brain Mapp; 2009 Mar; 30(3):883-95. PubMed ID: 18344175
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Saying it with feeling: neural responses to emotional vocalizations.
    Morris JS; Scott SK; Dolan RJ
    Neuropsychologia; 1999 Sep; 37(10):1155-63. PubMed ID: 10509837
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modality-general representations of valences perceived from visual and auditory modalities.
    Gu J; Cao L; Liu B
    Neuroimage; 2019 Dec; 203():116199. PubMed ID: 31536804
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The early spatio-temporal correlates and task independence of cerebral voice processing studied with MEG.
    Capilla A; Belin P; Gross J
    Cereb Cortex; 2013 Jun; 23(6):1388-95. PubMed ID: 22610392
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adaptation aftereffects in vocal emotion perception elicited by expressive faces and voices.
    Skuk VG; Schweinberger SR
    PLoS One; 2013; 8(11):e81691. PubMed ID: 24236215
    [TBL] [Abstract][Full Text] [Related]  

  • 47. How does the brain mediate interpretation of incongruent auditory emotions? The neural response to prosody in the presence of conflicting lexico-semantic cues.
    Mitchell RL
    Eur J Neurosci; 2006 Dec; 24(12):3611-8. PubMed ID: 17229109
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neural oscillations in human auditory cortex revealed by fast fMRI during auditory perception.
    Frühholz S; Trost W; Grandjean D; Belin P
    Neuroimage; 2020 Feb; 207():116401. PubMed ID: 31783116
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Audition of laughing and crying leads to right amygdala activation in a low-noise fMRI setting.
    Sander K; Brechmann A; Scheich H
    Brain Res Brain Res Protoc; 2003 May; 11(2):81-91. PubMed ID: 12738003
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Singing in the brain: Neural representation of music and voice as revealed by fMRI.
    Whitehead JC; Armony JL
    Hum Brain Mapp; 2018 Dec; 39(12):4913-4924. PubMed ID: 30120854
    [TBL] [Abstract][Full Text] [Related]  

  • 51. N400 during recognition of voice identity and vocal affect.
    Toivonen M; Rämä P
    Neuroreport; 2009 Sep; 20(14):1245-9. PubMed ID: 19623091
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The human amygdala disconnecting from auditory cortex preferentially discriminates musical sound of uncertain emotion by altering hemispheric weighting.
    Manno FAM; Lau C; Fernandez-Ruiz J; Manno SH; Cheng SH; Barrios FA
    Sci Rep; 2019 Oct; 9(1):14787. PubMed ID: 31615998
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Towards a fronto-temporal neural network for the decoding of angry vocal expressions.
    Frühholz S; Grandjean D
    Neuroimage; 2012 Sep; 62(3):1658-66. PubMed ID: 22721630
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The role of the medial temporal limbic system in processing emotions in voice and music.
    Frühholz S; Trost W; Grandjean D
    Prog Neurobiol; 2014 Dec; 123():1-17. PubMed ID: 25291405
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Voice-selective areas in human auditory cortex.
    Belin P; Zatorre RJ; Lafaille P; Ahad P; Pike B
    Nature; 2000 Jan; 403(6767):309-12. PubMed ID: 10659849
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Deep neural network predicts emotional responses of the human brain from functional magnetic resonance imaging.
    Kim HC; Bandettini PA; Lee JH
    Neuroimage; 2019 Feb; 186():607-627. PubMed ID: 30366076
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cerebral representation of non-verbal emotional perception: fMRI reveals audiovisual integration area between voice- and face-sensitive regions in the superior temporal sulcus.
    Kreifelts B; Ethofer T; Shiozawa T; Grodd W; Wildgruber D
    Neuropsychologia; 2009 Dec; 47(14):3059-66. PubMed ID: 19596021
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biasing the perception of ambiguous vocal affect: a TMS study on frontal asymmetry.
    Donhauser PW; Belin P; Grosbras MH
    Soc Cogn Affect Neurosci; 2014 Jul; 9(7):1046-51. PubMed ID: 23784072
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Association of trait emotional intelligence and individual fMRI-activation patterns during the perception of social signals from voice and face.
    Kreifelts B; Ethofer T; Huberle E; Grodd W; Wildgruber D
    Hum Brain Mapp; 2010 Jul; 31(7):979-91. PubMed ID: 19937724
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neural decoding of discriminative auditory object features depends on their socio-affective valence.
    Frühholz S; van der Zwaag W; Saenz M; Belin P; Schobert AK; Vuilleumier P; Grandjean D
    Soc Cogn Affect Neurosci; 2016 Oct; 11(10):1638-49. PubMed ID: 27217117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.