These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 24920615)

  • 61. Top-Down Modulation of Auditory-Motor Integration during Speech Production: The Role of Working Memory.
    Guo Z; Wu X; Li W; Jones JA; Yan N; Sheft S; Liu P; Liu H
    J Neurosci; 2017 Oct; 37(43):10323-10333. PubMed ID: 28951450
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effects of mild-to-moderate sensorineural hearing loss and signal amplification on vocal emotion recognition in middle-aged-older individuals.
    Ekberg M; Andin J; Stenfelt S; Dahlström Ö
    PLoS One; 2022; 17(1):e0261354. PubMed ID: 34995305
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Neural decoding of emotional prosody in voice-sensitive auditory cortex predicts social communication abilities in children.
    Leipold S; Abrams DA; Karraker S; Menon V
    Cereb Cortex; 2023 Jan; 33(3):709-728. PubMed ID: 35296892
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Discerning the functional networks behind processing of music and speech through human vocalizations.
    Angulo-Perkins A; Concha L
    PLoS One; 2019; 14(10):e0222796. PubMed ID: 31600231
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Children and adolescents' neural response to emotional faces and voices: Age-related changes in common regions of activation.
    Morningstar M; Mattson WI; Singer S; Venticinque JS; Nelson EE
    Soc Neurosci; 2020 Dec; 15(6):613-629. PubMed ID: 33017278
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Representation of perceived sound valence in the human brain.
    Viinikainen M; Kätsyri J; Sams M
    Hum Brain Mapp; 2012 Oct; 33(10):2295-305. PubMed ID: 21826759
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Dissociated roles of the inferior frontal gyrus and superior temporal sulcus in audiovisual processing: top-down and bottom-up mismatch detection.
    Uno T; Kawai K; Sakai K; Wakebe T; Ibaraki T; Kunii N; Matsuo T; Saito N
    PLoS One; 2015; 10(3):e0122580. PubMed ID: 25822912
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Specific brain networks during explicit and implicit decoding of emotional prosody.
    Frühholz S; Ceravolo L; Grandjean D
    Cereb Cortex; 2012 May; 22(5):1107-17. PubMed ID: 21750247
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Cross-modal interactions during perception of audiovisual speech and nonspeech signals: an fMRI study.
    Hertrich I; Dietrich S; Ackermann H
    J Cogn Neurosci; 2011 Jan; 23(1):221-37. PubMed ID: 20044895
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Neural correlates of adaptation to voice identity.
    Schweinberger SR; Walther C; Zäske R; Kovács G
    Br J Psychol; 2011 Nov; 102(4):748-64. PubMed ID: 21988382
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Reappraising the voices of wrath.
    Korb S; Frühholz S; Grandjean D
    Soc Cogn Affect Neurosci; 2015 Dec; 10(12):1644-60. PubMed ID: 25964502
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Cerebral processing of emotional prosody--influence of acoustic parameters and arousal.
    Wiethoff S; Wildgruber D; Kreifelts B; Becker H; Herbert C; Grodd W; Ethofer T
    Neuroimage; 2008 Jan; 39(2):885-93. PubMed ID: 17964813
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Categorizing human vocal signals depends on an integrated auditory-frontal cortical network.
    Roswandowitz C; Swanborough H; Frühholz S
    Hum Brain Mapp; 2021 Apr; 42(5):1503-1517. PubMed ID: 33615612
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Authenticity affects the recognition of emotions in speech: behavioral and fMRI evidence.
    Drolet M; Schubotz RI; Fischer J
    Cogn Affect Behav Neurosci; 2012 Mar; 12(1):140-50. PubMed ID: 22038706
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Cerebral processing of linguistic and emotional prosody: fMRI studies.
    Wildgruber D; Ackermann H; Kreifelts B; Ethofer T
    Prog Brain Res; 2006; 156():249-68. PubMed ID: 17015084
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Single-trial EEG-fMRI coupling of the emotional auditory early posterior negativity.
    Jaspers-Fayer F; Ertl M; Leicht G; Leupelt A; Mulert C
    Neuroimage; 2012 Sep; 62(3):1807-14. PubMed ID: 22584235
    [TBL] [Abstract][Full Text] [Related]  

  • 77. FMRI activations of amygdala, cingulate cortex, and auditory cortex by infant laughing and crying.
    Sander K; Frome Y; Scheich H
    Hum Brain Mapp; 2007 Oct; 28(10):1007-22. PubMed ID: 17358020
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Voice-sensitive regions in the dog and human brain are revealed by comparative fMRI.
    Andics A; Gácsi M; Faragó T; Kis A; Miklósi A
    Curr Biol; 2014 Mar; 24(5):574-8. PubMed ID: 24560578
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Contributions of sensory input, auditory search and verbal comprehension to cortical activity during speech processing.
    Giraud AL; Kell C; Thierfelder C; Sterzer P; Russ MO; Preibisch C; Kleinschmidt A
    Cereb Cortex; 2004 Mar; 14(3):247-55. PubMed ID: 14754865
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Sensitivity to voice in human prefrontal cortex.
    Fecteau S; Armony JL; Joanette Y; Belin P
    J Neurophysiol; 2005 Sep; 94(3):2251-4. PubMed ID: 15928057
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.