BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

794 related articles for article (PubMed ID: 24920675)

  • 1. Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart.
    Pham T; Loiselle D; Power A; Hickey AJ
    Am J Physiol Cell Physiol; 2014 Sep; 307(6):C499-507. PubMed ID: 24920675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Streptozotocin-induced type II diabetic rat administered with nonobesogenic high-fat diet is highly susceptible to myocardial ischemia-reperfusion injury: An insight into the function of mitochondria.
    Ansari M; Gopalakrishnan S; Kurian GA
    J Cell Physiol; 2019 Apr; 234(4):4104-4114. PubMed ID: 30191974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial Calpain-1 Disrupts ATP Synthase and Induces Superoxide Generation in Type 1 Diabetic Hearts: A Novel Mechanism Contributing to Diabetic Cardiomyopathy.
    Ni R; Zheng D; Xiong S; Hill DJ; Sun T; Gardiner RB; Fan GC; Lu Y; Abel ED; Greer PA; Peng T
    Diabetes; 2016 Jan; 65(1):255-68. PubMed ID: 26470784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Of mice and men: modeling cardiovascular complexity in diabetes. Focus on "Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart".
    Patel HH; McDonough AA
    Am J Physiol Cell Physiol; 2014 Sep; 307(6):C497-8. PubMed ID: 25031018
    [No Abstract]   [Full Text] [Related]  

  • 5. Phosphocreatine Improves Cardiac Dysfunction by Normalizing Mitochondrial Respiratory Function through JAK2/STAT3 Signaling Pathway
    Qaed E; Wang J; Almoiliqy M; Song Y; Liu W; Chu P; Alademi S; Alademi M; Li H; Alshwmi M; Al-Azab M; Ahsan A; Mahdi S; Han G; Niu M; Ali A; Shopit A; Wang H; Li X; Qaid A; Ma X; Li T; Peng J; Ma J; Zhang J; Tang Z
    Oxid Med Cell Longev; 2019; 2019():6521218. PubMed ID: 31885809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. p53 promotes cardiac dysfunction in diabetic mellitus caused by excessive mitochondrial respiration-mediated reactive oxygen species generation and lipid accumulation.
    Nakamura H; Matoba S; Iwai-Kanai E; Kimata M; Hoshino A; Nakaoka M; Katamura M; Okawa Y; Ariyoshi M; Mita Y; Ikeda K; Okigaki M; Adachi S; Tanaka H; Takamatsu T; Matsubara H
    Circ Heart Fail; 2012 Jan; 5(1):106-15. PubMed ID: 22075967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen peroxide, nitric oxide and ATP are molecules involved in cardiac mitochondrial biogenesis in Diabetes.
    Bombicino SS; Iglesias DE; Rukavina-Mikusic IA; Buchholz B; Gelpi RJ; Boveris A; Valdez LB
    Free Radic Biol Med; 2017 Nov; 112():267-276. PubMed ID: 28756312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Akap1 deficiency exacerbates diabetic cardiomyopathy in mice by NDUFS1-mediated mitochondrial dysfunction and apoptosis.
    Qi B; He L; Zhao Y; Zhang L; He Y; Li J; Li C; Zhang B; Huang Q; Xing J; Li F; Li Y; Ji L
    Diabetologia; 2020 May; 63(5):1072-1087. PubMed ID: 32072193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic loss of insulin receptors worsens cardiac efficiency in diabetes.
    Bugger H; Riehle C; Jaishy B; Wende AR; Tuinei J; Chen D; Soto J; Pires KM; Boudina S; Theobald HA; Luptak I; Wayment B; Wang X; Litwin SE; Weimer BC; Abel ED
    J Mol Cell Cardiol; 2012 May; 52(5):1019-26. PubMed ID: 22342406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exercise enhances cardiac function by improving mitochondrial dysfunction and maintaining energy homoeostasis in the development of diabetic cardiomyopathy.
    Wang SY; Zhu S; Wu J; Zhang M; Xu Y; Xu W; Cui J; Yu B; Cao W; Liu J
    J Mol Med (Berl); 2020 Feb; 98(2):245-261. PubMed ID: 31897508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Icariin reduces mitochondrial oxidative stress injury in diabetic rat hearts].
    Bao H; Chen L
    Zhongguo Zhong Yao Za Zhi; 2011 Jun; 36(11):1503-7. PubMed ID: 22779187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diabetic animal fed with high-fat diet prevents the protective effect of myocardial ischemic preconditioning effect in isolated rat heart perfusion model.
    Ansari M; Kurian GA
    J Biochem Mol Toxicol; 2020 Apr; 34(4):e22457. PubMed ID: 32022976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can We Prevent Mitochondrial Dysfunction and Diabetic Cardiomyopathy in Type 1 Diabetes Mellitus? Pathophysiology and Treatment Options.
    Cieluch A; Uruska A; Zozulinska-Ziolkiewicz D
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32325880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diabetes impairs heart mitochondrial function without changes in resting cardiac performance.
    Bombicino SS; Iglesias DE; Mikusic IAR; D'Annunzio V; Gelpi RJ; Boveris A; Valdez LB
    Int J Biochem Cell Biol; 2016 Dec; 81(Pt B):335-345. PubMed ID: 27682517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in mitochondrial morphology and organization can enhance energy supply from mitochondrial oxidative phosphorylation in diabetic cardiomyopathy.
    Jarosz J; Ghosh S; Delbridge LM; Petzer A; Hickey AJ; Crampin EJ; Hanssen E; Rajagopal V
    Am J Physiol Cell Physiol; 2017 Feb; 312(2):C190-C197. PubMed ID: 27903587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of altered cellular ultrastructure on energy metabolism in diabetic cardiomyopathy: an
    Ghosh S; Guglielmi G; Orfanidis I; Spill F; Hickey A; Hanssen E; Rajagopal V
    Philos Trans R Soc Lond B Biol Sci; 2022 Nov; 377(1864):20210323. PubMed ID: 36189807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversal of mitochondrial proteomic loss in Type 1 diabetic heart with overexpression of phospholipid hydroperoxide glutathione peroxidase.
    Baseler WA; Dabkowski ER; Jagannathan R; Thapa D; Nichols CE; Shepherd DL; Croston TL; Powell M; Razunguzwa TT; Lewis SE; Schnell DM; Hollander JM
    Am J Physiol Regul Integr Comp Physiol; 2013 Apr; 304(7):R553-65. PubMed ID: 23408027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mitochondrial bioenergetic phenotype for protection from cardiac ischemia in SUR2 mutant mice.
    Aggarwal NT; Pravdic D; McNally EM; Bosnjak ZJ; Shi NQ; Makielski JC
    Am J Physiol Heart Circ Physiol; 2010 Dec; 299(6):H1884-90. PubMed ID: 20935152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na+ effects on mitochondrial respiration and oxidative phosphorylation in diabetic hearts.
    Babsky A; Doliba N; Doliba N; Savchenko A; Wehrli S; Osbakken M
    Exp Biol Med (Maywood); 2001 Jun; 226(6):543-51. PubMed ID: 11395924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ischemic damage to every segment of the oxidative phosphorylation cascade elevates ETC driving force and ROS production in cardiac mitochondria.
    Kuzmiak-Glancy S; Glancy B; Kay MW
    Am J Physiol Heart Circ Physiol; 2022 Sep; 323(3):H499-H512. PubMed ID: 35867709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.