BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 24921197)

  • 1. What interactions drive the salivary mucosal pellicle formation?
    Gibbins HL; Yakubov GE; Proctor GB; Wilson S; Carpenter GH
    Colloids Surf B Biointerfaces; 2014 Aug; 120(100):184-92. PubMed ID: 24921197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pellicle precursor proteins: acidic proline-rich proteins, statherin, and histatins, and their crosslinking reaction by oral transglutaminase.
    Yao Y; Lamkin MS; Oppenheim FG
    J Dent Res; 1999 Nov; 78(11):1696-703. PubMed ID: 10576165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concentration of salivary protective proteins within the bound oral mucosal pellicle.
    Gibbins HL; Proctor GB; Yakubov GE; Wilson S; Carpenter GH
    Oral Dis; 2014 Oct; 20(7):707-13. PubMed ID: 24205881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of salivary-mucosal pellicle: the role of transglutaminase.
    Bradway SD; Bergey EJ; Scannapieco FA; Ramasubbu N; Zawacki S; Levine MJ
    Biochem J; 1992 Jun; 284 ( Pt 2)(Pt 2):557-64. PubMed ID: 1376115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saliva and Serum Protein Exchange at the Tooth Enamel Surface.
    Heller D; Helmerhorst EJ; Oppenheim FG
    J Dent Res; 2017 Apr; 96(4):437-443. PubMed ID: 27879420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of human salivary proteins to hydroxyapatite: a comparison between whole saliva and glandular salivary secretions.
    Jensen JL; Lamkin MS; Oppenheim FG
    J Dent Res; 1992 Sep; 71(9):1569-76. PubMed ID: 1381733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pellicle precursor protein crosslinking characterization of an adduct between acidic proline-rich protein (PRP-1) and statherin generated by transglutaminase.
    Yao Y; Lamkin MS; Oppenheim FG
    J Dent Res; 2000 Apr; 79(4):930-8. PubMed ID: 10831095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The membrane-associated MUC1 improves adhesion of salivary MUC5B on buccal cells. Application to development of an in vitro cellular model of oral epithelium.
    Ployon S; Belloir C; Bonnotte A; Lherminier J; Canon F; Morzel M
    Arch Oral Biol; 2016 Jan; 61():149-55. PubMed ID: 26580166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental salivary pellicles formed on titanium surfaces mediate adhesion of streptococci.
    Edgerton M; Lo SE; Scannapieco FA
    Int J Oral Maxillofac Implants; 1996; 11(4):443-9. PubMed ID: 8803339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SIgA binding to mucosal surfaces is mediated by mucin-mucin interactions.
    Gibbins HL; Proctor GB; Yakubov GE; Wilson S; Carpenter GH
    PLoS One; 2015; 10(3):e0119677. PubMed ID: 25793390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human salivary mucin MG1 selectively forms heterotypic complexes with amylase, proline-rich proteins, statherin, and histatins.
    Iontcheva I; Oppenheim FG; Troxler RF
    J Dent Res; 1997 Mar; 76(3):734-43. PubMed ID: 9109822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salivary receptors for the proline-rich protein-binding and lectin-like adhesins of oral actinomyces and streptococci.
    Ruhl S; Sandberg AL; Cisar JO
    J Dent Res; 2004 Jun; 83(6):505-10. PubMed ID: 15153461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein and mucin retention on oral mucosal surfaces in dry mouth patients.
    Pramanik R; Osailan SM; Challacombe SJ; Urquhart D; Proctor GB
    Eur J Oral Sci; 2010 Jun; 118(3):245-53. PubMed ID: 20572857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the adsorption behaviour of saliva and purified salivary proteins at solid/liquid interfaces.
    Lindh L
    Swed Dent J Suppl; 2002; (152):1-57. PubMed ID: 12082970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic characterization of the mucosal pellicle formed in vitro on a cellular model of oral epithelium.
    Cabiddu G; Maes P; Hyvrier F; Olianas A; Manconi B; Brignot H; Canon F; Cabras T; Morzel M
    J Proteomics; 2020 Jun; 222():103797. PubMed ID: 32360370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of in vivo salivary-derived enamel pellicle.
    Al-Hashimi I; Levine MJ
    Arch Oral Biol; 1989; 34(4):289-95. PubMed ID: 2480770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of protein components in human acquired enamel pellicle and whole saliva using novel proteomics approaches.
    Yao Y; Berg EA; Costello CE; Troxler RF; Oppenheim FG
    J Biol Chem; 2003 Feb; 278(7):5300-8. PubMed ID: 12444093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statherin is an in vivo pellicle constituent: identification and immuno-quantification.
    Li J; Helmerhorst EJ; Yao Y; Nunn ME; Troxler RF; Oppenheim FG
    Arch Oral Biol; 2004 May; 49(5):379-85. PubMed ID: 15041485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Individual variations in protective effects of experimentally formed salivary pellicles.
    Bruvo M; Moe D; Kirkeby S; Vorum H; Bardow A
    Caries Res; 2009; 43(3):163-70. PubMed ID: 19390190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental salivary pellicles formed on the surface of self-curing resin.
    Yoo JH; Kho HS; Kim YK; Lee SW; Chung SC
    J Oral Rehabil; 2003 Mar; 30(3):251-9. PubMed ID: 12588496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.