These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 24921290)
1. Raman scattering reveals strong LO-phonon-hole-plasmon coupling in nominally undoped GaAsBi: optical determination of carrier concentration. Steele JA; Lewis RA; Henini M; Lemine OM; Fan D; Mazur YI; Dorogan VG; Grant PC; Yu SQ; Salamo GJ Opt Express; 2014 May; 22(10):11680-9. PubMed ID: 24921290 [TBL] [Abstract][Full Text] [Related]
2. Raman characterization of single-crystalline Ga Corrêa GB; Kumar S; Paschoal W; Devi C; Jacobsson D; Johannes A; Ronning C; Pettersson H; Paraguassu W Nanotechnology; 2019 Aug; 30(33):335202. PubMed ID: 31018190 [TBL] [Abstract][Full Text] [Related]
3. Temperature dependence of Raman scattering in bulk 4H-SiC with different carrier concentration. Sun HY; Lien SC; Qiu ZR; Wang HC; Mei T; Liu CW; Feng ZC Opt Express; 2013 Nov; 21(22):26475-82. PubMed ID: 24216868 [TBL] [Abstract][Full Text] [Related]
4. [LO phonon-plasmon coupled mode in hexagonal IngaN alloy]. Wang RM; Chen GD Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jan; 29(1):138-41. PubMed ID: 19385224 [TBL] [Abstract][Full Text] [Related]
5. Enhanced light scattering of the forbidden longitudinal optical phonon mode studied by micro-Raman spectroscopy on single InN nanowires. Schäfer-Nolte EO; Stoica T; Gotschke T; Limbach FA; Sutter E; Sutter P; Grützmacher D; Calarco R Nanotechnology; 2010 Aug; 21(31):315702. PubMed ID: 20634570 [TBL] [Abstract][Full Text] [Related]
6. Longitudinal optical phonon-plasmon coupling in luminescent 3C-SiC nanocrystal films. Liu LZ; Wang J; Wu XL; Li TH; Chu PK Opt Lett; 2010 Dec; 35(23):4024-6. PubMed ID: 21124600 [TBL] [Abstract][Full Text] [Related]
7. Observation of photo-induced plasmon-phonon coupling in PbTe via ultrafast x-ray scattering. Jiang MP; Fahy S; Hauber A; Murray ÉD; Savić I; Bray C; Clark JN; Henighan T; Kozina M; Lindenberg AM; Zalden P; Chollet M; Glownia JM; Hoffmann MC; Sato T; Zhu D; Delaire O; May AF; Sales BC; Merlin R; Trigo M; Reis DA Struct Dyn; 2022 Mar; 9(2):024301. PubMed ID: 35311000 [TBL] [Abstract][Full Text] [Related]
8. Electron and phonon coupling dynamics in low-gap semiconductor: quantum versus classical scale. Min KG; Yee KJ; Stanton CJ; Song JD; Jho YD J Nanosci Nanotechnol; 2014 Jul; 14(7):5177-80. PubMed ID: 24757998 [TBL] [Abstract][Full Text] [Related]
9. Phonon-Plasmon Coupling and Active Cu Dopants in Indium Arsenide Nanocrystals Studied by Resonance Raman Spectroscopy. Faust A; Amit Y; Banin U J Phys Chem Lett; 2017 Jun; 8(11):2519-2525. PubMed ID: 28524661 [TBL] [Abstract][Full Text] [Related]
10. Raman-scattering spectra of coupled LO-phonon-hole-plasmon modes in p-type GaAs. Fukasawa R; Perkowitz S Phys Rev B Condens Matter; 1994 Nov; 50(19):14119-14124. PubMed ID: 9975629 [No Abstract] [Full Text] [Related]
11. Raman scattering study of coupled hole-plasmon-LO-phonon modes in p-type GaAs and p-type AlxGa1-xAs. Yuasa T; Ishii M Phys Rev B Condens Matter; 1987 Mar; 35(8):3962-3970. PubMed ID: 9941920 [No Abstract] [Full Text] [Related]
12. Raman scattering study of background electron density in InN: a hydrodynamical approach to the LO-phonon-plasmon coupled modes. Cuscó R; Alarcón-Lladó E; Ibáñez J; Yamaguchi T; Nanishi Y; Artús L J Phys Condens Matter; 2009 Oct; 21(41):415801. PubMed ID: 21693998 [TBL] [Abstract][Full Text] [Related]
13. Composition, Optical Resonances, and Doping of InP/InGaP Nanowires for Tandem Solar Cells: a Micro-Raman Analysis. Mediavilla I; Pura JL; Hinojosa VG; Galiana B; Hrachowina L; Borgström MT; Jimenez J ACS Nano; 2024 Apr; 18(14):10113-10123. PubMed ID: 38536891 [TBL] [Abstract][Full Text] [Related]
14. Raman scattering in Me-doped ZnO nanorods (Me = Mn, Co, Cu and Ni) prepared by thermal diffusion. Phan TL; Vincent R; Cherns D; Nghia NX; Ursaki VV Nanotechnology; 2008 Nov; 19(47):475702. PubMed ID: 21836283 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of carrier density and mobility in Mn ion-implanted GaAs:Zn nanowires by Raman spectroscopy. Kumar S; Corrêa GB; Devi C; Jacobsson D; Johannes A; Ronning C; Paraguassu W; Paschoal W; Pettersson H Nanotechnology; 2020 May; 31(20):205705. PubMed ID: 31995520 [TBL] [Abstract][Full Text] [Related]
16. Atomic-Resolution EDX, HAADF, and EELS Study of GaAs Paulauskas T; Pačebutas V; Butkutė R; Čechavičius B; Naujokaitis A; Kamarauskas M; Skapas M; Devenson J; Čaplovičová M; Vretenár V; Li X; Kociak M; Krotkus A Nanoscale Res Lett; 2020 May; 15(1):121. PubMed ID: 32451638 [TBL] [Abstract][Full Text] [Related]
17. Electronic transport in n- and p-type modulation doped Ga(x)In(1-x)N(y)As(1-y)/ GaAs quantum wells. Sun Y; Balkan N; Aslan M; Lisesivdin SB; Carrere H; Arikan MC; Marie X J Phys Condens Matter; 2009 Apr; 21(17):174210. PubMed ID: 21825414 [TBL] [Abstract][Full Text] [Related]
18. Complex energies of the coherent longitudinal optical phonon-plasmon coupled mode according to dynamic mode decomposition analysis. Sakata I; Sakata T; Mizoguchi K; Tanaka S; Oohata G; Akai I; Igarashi Y; Nagano Y; Okada M Sci Rep; 2021 Nov; 11(1):23169. PubMed ID: 34848772 [TBL] [Abstract][Full Text] [Related]
19. Mobility and carrier density in p-type GaAs nanowires measured by transmission Raman spectroscopy. Ketterer B; Uccelli E; Fontcuberta i Morral A Nanoscale; 2012 Mar; 4(5):1789-93. PubMed ID: 22297540 [TBL] [Abstract][Full Text] [Related]
20. Observation of phonon sideband emission in intrinsic InN nanowires: a photoluminescence and micro-Raman scattering study. Zhao S; Wang Q; Mi Z; Fathololoumi S; Gonzalez T; Andrews MP Nanotechnology; 2012 Oct; 23(41):415706. PubMed ID: 23018196 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]