These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 24921372)

  • 1. Microstructured gradient-index antireflective coating fabricated on a fiber tip with direct laser writing.
    Kowalczyk M; Haberko J; Wasylczyk P
    Opt Express; 2014 May; 22(10):12545-50. PubMed ID: 24921372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized antireflective silicon nanostructure arrays using nanosphere lithography.
    Lee D; Bae J; Hong S; Yang H; Kim YB
    Nanotechnology; 2016 May; 27(21):215302. PubMed ID: 27087196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A facile dip-coating approach based on three silica sols to fabrication of broadband antireflective superhydrophobic coatings.
    Gao L; He J
    J Colloid Interface Sci; 2013 Jun; 400():24-30. PubMed ID: 23582903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-performance, single-layer antireflective optical coatings comprising mesoporous silica nanoparticles.
    Moghal J; Kobler J; Sauer J; Best J; Gardener M; Watt AA; Wakefield G
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):854-9. PubMed ID: 22188238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigations of porous oxides as an antireflective coating for glass surfaces.
    Yoldas BE
    Appl Opt; 1980 May; 19(9):1425-9. PubMed ID: 20221053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wafer-scale broadband antireflective silicon fabricated by metal-assisted chemical etching using spin-coating Ag ink.
    Yeo CI; Song YM; Jang SJ; Lee YT
    Opt Express; 2011 Sep; 19 Suppl 5():A1109-16. PubMed ID: 21935253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano-cones for broadband light coupling to high index substrates.
    Buencuerpo J; Torné L; Álvaro R; Llorens JM; Dotor ML; Ripalda JM
    Sci Rep; 2016 Dec; 6():38682. PubMed ID: 27924859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antireflective coatings with adjustable refractive index and porosity synthesized by micelle-templated deposition of MgF2 sol particles.
    Bernsmeier D; Polte J; Ortel E; Krahl T; Kemnitz E; Kraehnert R
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19559-65. PubMed ID: 25372504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An abrasion-resistant and broadband antireflective silica coating by block copolymer assisted sol-gel method.
    Zou L; Li X; Zhang Q; Shen J
    Langmuir; 2014 Sep; 30(34):10481-6. PubMed ID: 25117300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband antireflective glasses with subwavelength structures using randomly distributed Ag nanoparticles.
    Park GC; Song YM; Ha JH; Lee YT
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6152-6. PubMed ID: 22121676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All-Nanoparticle Monolayer Broadband Antireflective and Self-Cleaning Transparent Glass Coatings.
    Gruzd A; Tokarev A; Tokarev I; Kuksenkov D; Minko S
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6767-6777. PubMed ID: 33523621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Luminescent antireflective coatings with disordered surface nanostructures fabricated by liquid processes.
    Tanaka S; Fujihara S
    Langmuir; 2011 Mar; 27(6):2929-35. PubMed ID: 21338102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple fabrication of an antireflective hemispherical surface structure using a self-assembly method for the terahertz frequency range.
    Kim DS; Kim DJ; Kim DH; Hwang S; Jang JH
    Opt Lett; 2012 Jul; 37(13):2742-4. PubMed ID: 22743514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Al
    Khan SB; Wu H; Xie Z; Wang W; Zhang Z
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36327-36337. PubMed ID: 28956908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical Performance Assessment of Nanostructured Alumina Multilayer Antireflective Coatings Used in III-V Multijunction Solar Cells.
    Reuna J; Hietalahti A; Aho A; Isoaho R; Aho T; Vuorinen M; Tukiainen A; Anttola E; Guina M
    ACS Appl Energy Mater; 2022 May; 5(5):5804-5810. PubMed ID: 35647495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antireflective coatings on Fresnel lenses by spin-coating of solid silica nanoparticles.
    Zhou G; He J
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5534-41. PubMed ID: 23882790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of antireflective nanostructures and optical coatings for next-generation multijunction photovoltaic devices.
    Perl EE; McMahon WE; Bowers JE; Friedman DJ
    Opt Express; 2014 Aug; 22 Suppl 5():A1243-56. PubMed ID: 25322179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antireflective surface structures in glass by self-assembly of SiO2 nanoparticles and wet etching.
    Maier T; Bach D; Müllner P; Hainberger R; Brückl H
    Opt Express; 2013 Aug; 21(17):20254-9. PubMed ID: 24105570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wide-angle broadband antireflection coatings based on boomerang-like alumina nanostructures in visible region.
    Omrani M; Malekmohammad M; Zabolian H
    Sci Rep; 2022 Jan; 12(1):904. PubMed ID: 35042946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential Infiltration Synthesis for the Design of Low Refractive Index Surface Coatings with Controllable Thickness.
    Berman D; Guha S; Lee B; Elam JW; Darling SB; Shevchenko EV
    ACS Nano; 2017 Mar; 11(3):2521-2530. PubMed ID: 28139905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.