These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 24921476)
1. Bio-inspired, sub-wavelength surface structures for ultra-broadband, omni-directional anti-reflection in the mid and far IR. Gonzalez FL; Gordon MJ Opt Express; 2014 Jun; 22(11):12808-16. PubMed ID: 24921476 [TBL] [Abstract][Full Text] [Related]
2. Importance of diffuse scattering phenomena in moth-eye arrays for broadband infrared applications. Gonzalez FL; Morse DE; Gordon MJ Opt Lett; 2014 Jan; 39(1):13-6. PubMed ID: 24365809 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of an anti-reflective microstructure on sapphire by femtosecond laser direct writing. Li QK; Cao JJ; Yu YH; Wang L; Sun YL; Chen QD; Sun HB Opt Lett; 2017 Feb; 42(3):543-546. PubMed ID: 28146523 [TBL] [Abstract][Full Text] [Related]
4. Moth eye-inspired anti-reflective surfaces for improved IR optical systems & visible LEDs fabricated with colloidal lithography and etching. Chan LW; Morse DE; Gordon MJ Bioinspir Biomim; 2018 May; 13(4):041001. PubMed ID: 29547135 [TBL] [Abstract][Full Text] [Related]
5. Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the Brewster angle. Chuang SY; Chen HL; Shieh J; Lin CH; Cheng CC; Liu HW; Yu CC Nanoscale; 2010 May; 2(5):799-805. PubMed ID: 20648327 [TBL] [Abstract][Full Text] [Related]
6. Optimal moth eye nanostructure array on transparent glass towards broadband antireflection. Ji S; Song K; Nguyen TB; Kim N; Lim H ACS Appl Mater Interfaces; 2013 Nov; 5(21):10731-7. PubMed ID: 24116953 [TBL] [Abstract][Full Text] [Related]
7. Polarization-insensitive broadband omni-directional anti-reflection in ZnO nanoneedle array for efficient solar energy harvesting. Ko M; Choi HS; Baek SH; Cho CH Nanoscale Adv; 2022 Feb; 4(4):1074-1079. PubMed ID: 36131757 [TBL] [Abstract][Full Text] [Related]
8. Suppression of backscattered diffraction from sub-wavelength 'moth-eye' arrays. Stavroulakis PI; Boden SA; Johnson T; Bagnall DM Opt Express; 2013 Jan; 21(1):1-11. PubMed ID: 23388890 [TBL] [Abstract][Full Text] [Related]
9. Optimization and continuous fabrication of moth-eye nanostructure array on flexible polyethylene terephthalate substrate towards broadband antireflection. Zhang C; Yi P; Peng L; Ni J Appl Opt; 2017 Apr; 56(10):2901-2907. PubMed ID: 28375259 [TBL] [Abstract][Full Text] [Related]
10. Enhanced broadband and omni-directional performance of polycrystalline Si solar cells by using discrete multilayer antireflection coatings. Oh SJ; Chhajed S; Poxson DJ; Cho J; Schubert EF; Tark SJ; Kim D; Kim JK Opt Express; 2013 Jan; 21 Suppl 1():A157-66. PubMed ID: 23389267 [TBL] [Abstract][Full Text] [Related]
11. Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning. Ji S; Park J; Lim H Nanoscale; 2012 Aug; 4(15):4603-10. PubMed ID: 22706661 [TBL] [Abstract][Full Text] [Related]
12. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Huang YF; Chattopadhyay S; Jen YJ; Peng CY; Liu TA; Hsu YK; Pan CL; Lo HC; Hsu CH; Chang YH; Lee CS; Chen KH; Chen LC Nat Nanotechnol; 2007 Dec; 2(12):770-4. PubMed ID: 18654429 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of hierarchical moth-eye structures with durable superhydrophobic property for ultra-broadband visual and mid-infrared applications. Dong L; Zhang Z; Wang L; Weng Z; Ouyang M; Fu Y; Wang J; Li D; Wang Z Appl Opt; 2019 Aug; 58(24):6706-6712. PubMed ID: 31503604 [TBL] [Abstract][Full Text] [Related]
14. Angular distribution of diffuse reflectance from incoherent multiple scattering in turbid media. Gao M; Huang X; Yang P; Kattawar GW Appl Opt; 2013 Aug; 52(24):5869-79. PubMed ID: 24084986 [TBL] [Abstract][Full Text] [Related]
15. Ultra-broadband, polarization-independent, wide-angle absorption in impedance-matched metamaterials with anti-reflective moth-eye surfaces. Contractor R; D'Aguanno G; Menyuk C Opt Express; 2018 Sep; 26(18):24031-24043. PubMed ID: 30184896 [TBL] [Abstract][Full Text] [Related]
16. Rational design of inverted nanopencil arrays for cost-effective, broadband, and omnidirectional light harvesting. Lin H; Xiu F; Fang M; Yip S; Cheung HY; Wang F; Han N; Chan KS; Wong CY; Ho JC ACS Nano; 2014 Apr; 8(4):3752-60. PubMed ID: 24579981 [TBL] [Abstract][Full Text] [Related]
17. Ultra-Broadband Directional Scattering by Colloidally Lithographed High-Index Mie Resonant Oligomers and Their Energy-Harvesting Applications. Zhang Y; Xu Y; Chen S; Lu H; Chen K; Cao Y; Miroshnichenko AE; Gu M; Li X ACS Appl Mater Interfaces; 2018 May; 10(19):16776-16782. PubMed ID: 29682955 [TBL] [Abstract][Full Text] [Related]
18. Biomimetic Moth-eye Nanofabrication: Enhanced Antireflection with Superior Self-cleaning Characteristic. Sun J; Wang X; Wu J; Jiang C; Shen J; Cooper MA; Zheng X; Liu Y; Yang Z; Wu D Sci Rep; 2018 Apr; 8(1):5438. PubMed ID: 29615712 [TBL] [Abstract][Full Text] [Related]
19. Antireflection Structures for VIS and NIR on Arbitrarily Shaped Fused Silica Substrates with Colloidal Polystyrene Nanosphere Lithography. Schmelz D; Jia G; Käsebier T; Plentz J; Zeitner UD Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374789 [TBL] [Abstract][Full Text] [Related]