These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 24921590)

  • 21. Fast online rubidium DPAL atomic concentration measurement by 420  nm probe laser.
    Zhao HZ; Wang HY; Tang H; Li L; Yang ZN; Yang WQ; Han K; Xu XJ
    Appl Opt; 2021 Dec; 60(35):10862-10866. PubMed ID: 35200847
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling of pulsed K diode pumped alkali laser: Analysis of the experimental results.
    Auslender I; Barmashenko B; Rosenwaks S; Zhdanov B; Rotondaro M; Knize RJ
    Opt Express; 2015 Aug; 23(16):20986-96. PubMed ID: 26367951
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling of a diode four-side symmetrically pumped alkali vapor amplifier.
    Shen B; Pan B; Jiao J; Xia C
    Opt Express; 2015 Mar; 23(5):5941-53. PubMed ID: 25836820
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Open-Path Atmospheric Transmission of Diode-Pumped Alkali Lasers in Maritime and Desert Environments.
    Rice CA; Pitz GA; Guy MR; Perram GP
    Appl Spectrosc; 2023 Apr; 77(4):335-349. PubMed ID: 36443643
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling of an optically side-pumped alkali vapor amplifier with consideration of amplified spontaneous emission.
    Yang Z; Wang H; Lu Q; Hua W; Xu X
    Opt Express; 2011 Nov; 19(23):23118-31. PubMed ID: 22109192
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetics of Metastable Argon Optical Excitation and Gain in Ar/He Microplasmas.
    Rawlins WT; Hoskinson AR; Galbally-Kinney KL; Davis SJ; Hopwood JA; Han J; Heaven MC
    J Phys Chem A; 2023 Mar; 127(11):2489-2502. PubMed ID: 36913655
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In situ non-perturbative temperature measurement in a Cs alkali laser.
    Shaffer MK; Lilly TC; Zhdanov BV; Knize RJ
    Opt Lett; 2015 Jan; 40(1):119-22. PubMed ID: 25531624
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ionization degree measurement in the gain medium of a hydrocarbon-free rubidium vapor laser operating in pulsed and CW modes.
    Zhao X; Yang Z; Hua W; Wang H; Xu X
    Opt Express; 2017 Apr; 25(8):9458-9470. PubMed ID: 28437908
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Open-path atmospheric transmission for a diode-pumped cesium laser.
    Rice CA; Lott GE; Perram GP
    Appl Opt; 2012 Dec; 51(34):8102-10. PubMed ID: 23207380
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Picosecond evolution of pulsed and CW alkali vapor lasers: laser oscillation buildup.
    Shen B; Li Y; Liu L; Qu J
    Opt Express; 2020 Jun; 28(13):19482-19491. PubMed ID: 32672224
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Peak-power enhancement of a cavity-dumped cesium-vapor laser by using dual longitudinal-mode oscillations.
    Endo M
    Opt Express; 2020 Nov; 28(23):33994-34007. PubMed ID: 33182877
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Methane-based in situ temperature rise measurement in a diode-pumped rubidium laser.
    Wang R; Yang Z; Wang H; Xu X
    Opt Lett; 2017 Feb; 42(4):667-670. PubMed ID: 28198835
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetics of optically pumped Kr metastables.
    Han J; Heaven MC
    Opt Lett; 2015 Apr; 40(7):1310-3. PubMed ID: 25831320
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 28W average power hydrocarbon-free rubidium diode pumped alkali laser.
    Zweiback J; Krupke WF
    Opt Express; 2010 Jan; 18(2):1444-9. PubMed ID: 20173972
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multimode-diode-pumped gas (alkali-vapor) laser.
    Page RH; Beach RJ; Kanz VK; Krupke WF
    Opt Lett; 2006 Feb; 31(3):353-5. PubMed ID: 16480206
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dysprosium-doped PbGa2S4 laser generating at 4.3 μm directly pumped by 1.7 μm laser diode.
    Jelínková H; Doroshenko ME; Jelínek M; Sulc J; Osiko VV; Badikov VV; Badikov DV
    Opt Lett; 2013 Aug; 38(16):3040-3. PubMed ID: 24104642
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling of flowing gas diode pumped alkali lasers: dependence of the operation on the gas velocity and on the nature of the buffer gas.
    Barmashenko BD; Rosenwaks S
    Opt Lett; 2012 Sep; 37(17):3615-7. PubMed ID: 22940967
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flowing-gas diode pumped alkali lasers: theoretical analysis of transonic vs supersonic and subsonic devices.
    Yacoby E; Waichman K; Sadot O; Barmashenko BD; Rosenwaks S
    Opt Express; 2016 Mar; 24(5):5469-5477. PubMed ID: 29092370
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Room temperature single longitudinal mode laser output at 1645 nm from a laser-diode pumped Er:YAG nonplanar ring oscillator.
    Yao BQ; Yu X; Liu XL; Duan XM; Ju YL; Wang YZ
    Opt Express; 2013 Apr; 21(7):8916-21. PubMed ID: 23571982
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation of dual-wavelength pump schemes for optically pumped rare gas lasers.
    Sun P; Zuo D; Wang X; Han J; Heaven MC
    Opt Express; 2020 May; 28(10):14580-14589. PubMed ID: 32403496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.