These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 24921600)

  • 21. Relationship between pelagic larval duration and abundance of tropical fishes on temperate coasts of Japan.
    Soeparno ; Nakamura Y; Shibuno T; Yamaoka K
    J Fish Biol; 2012 Feb; 80(2):346-57. PubMed ID: 22268434
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic population structure of the endemic fourline wrasse (Larabicus quadrilineatus) suggests limited larval dispersal distances in the Red Sea.
    Froukh T; Kochzius M
    Mol Ecol; 2007 Apr; 16(7):1359-67. PubMed ID: 17391261
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How Nemo finds home: the neuroecology of dispersal and of population connectivity in larvae of marine fishes.
    Leis JM; Siebeck U; Dixson DL
    Integr Comp Biol; 2011 Nov; 51(5):826-43. PubMed ID: 21562025
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic assignment of recruits reveals short- and long-distance larval dispersal in Pocillopora damicornis on the Great Barrier Reef.
    Torda G; Lundgren P; Willis BL; van Oppen MJ
    Mol Ecol; 2013 Dec; 22(23):5821-34. PubMed ID: 24112610
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish.
    Taylor MS; Hellberg ME
    Science; 2003 Jan; 299(5603):107-9. PubMed ID: 12511651
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Smelling home can prevent dispersal of reef fish larvae.
    Gerlach G; Atema J; Kingsford MJ; Black KP; Miller-Sims V
    Proc Natl Acad Sci U S A; 2007 Jan; 104(3):858-63. PubMed ID: 17213323
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Species ecology explains the spatial components of genetic diversity in tropical reef fishes.
    Donati GFA; Zemp N; Manel S; Poirier M; Claverie T; Ferraton F; Gaboriau T; Govinden R; Hagen O; Ibrahim S; Mouillot D; Leblond J; Julius P; Velez L; Zareer I; Ziyad A; Leprieur F; Albouy C; Pellissier L
    Proc Biol Sci; 2021 Sep; 288(1959):20211574. PubMed ID: 34583586
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence for cohesive dispersal in the sea.
    Ben-Tzvi O; Abelson A; Gaines SD; Bernardi G; Beldade R; Sheehy MS; Paradis GL; Kiflawi M
    PLoS One; 2012; 7(9):e42672. PubMed ID: 23028433
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coral reefs promote the evolution of morphological diversity and ecological novelty in labrid fishes.
    Price SA; Holzman R; Near TJ; Wainwright PC
    Ecol Lett; 2011 May; 14(5):462-9. PubMed ID: 21385297
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatial patterns of self-recruitment of a coral reef fish in relation to island-scale retention mechanisms.
    Beldade R; Holbrook SJ; Schmitt RJ; Planes S; Bernardi G
    Mol Ecol; 2016 Oct; 25(20):5203-5211. PubMed ID: 27557731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adult and larval traits as determinants of geographic range size among tropical reef fishes.
    Luiz OJ; Allen AP; Robertson DR; Floeter SR; Kulbicki M; Vigliola L; Becheler R; Madin JS
    Proc Natl Acad Sci U S A; 2013 Oct; 110(41):16498-502. PubMed ID: 24065830
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dispersal and population connectivity are phenotype dependent in a marine metapopulation.
    Fobert EK; Treml EA; Swearer SE
    Proc Biol Sci; 2019 Aug; 286(1909):20191104. PubMed ID: 31455189
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-recruitment in a Caribbean reef fish: a method for approximating dispersal kernels accounting for seascape.
    D'Aloia CC; Bogdanowicz SM; Majoris JE; Harrison RG; Buston PM
    Mol Ecol; 2013 May; 22(9):2563-72. PubMed ID: 23495725
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using post-settlement demography to estimate larval survivorship: a coral reef fish example.
    Johnson DW; Christie MR; Stallings CD; Pusack TJ; Hixon MA
    Oecologia; 2015 Nov; 179(3):729-39. PubMed ID: 26093629
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elevated rates of morphological and functional diversification in reef-dwelling haemulid fishes.
    Price SA; Tavera JJ; Near TJ; Wainwright PC
    Evolution; 2013 Feb; 67(2):417-28. PubMed ID: 23356614
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multispecies spawning sites for fishes on a low-latitude coral reef: spatial and temporal patterns.
    Claydon JA; McCormick MI; Jones GP
    J Fish Biol; 2014 Apr; 84(4):1136-63. PubMed ID: 24665915
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Demographic history, geographical distribution and reproductive isolation of distinct lineages of blue rockfish (Sebastes mystinus), a marine fish with a high dispersal potential.
    Burford MO
    J Evol Biol; 2009 Jul; 22(7):1471-86. PubMed ID: 19467131
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trophic innovations fuel reef fish diversification.
    Siqueira AC; Morais RA; Bellwood DR; Cowman PF
    Nat Commun; 2020 May; 11(1):2669. PubMed ID: 32472063
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chromosomal diversity in tropical reef fishes is related to body size and depth range.
    Martinez PA; Zurano JP; Amado TF; Penone C; Betancur-R R; Bidau CJ; Jacobina UP
    Mol Phylogenet Evol; 2015 Dec; 93():1-4. PubMed ID: 26192117
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic drift and collective dispersal can result in chaotic genetic patchiness.
    Broquet T; Viard F; Yearsley JM
    Evolution; 2013 Jun; 67(6):1660-75. PubMed ID: 23730760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.