These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 24921630)
1. The importance of helix P1 stability for structural pre-organization and ligand binding affinity of the adenine riboswitch aptamer domain. Nozinovic S; Reining A; Kim YB; Noeske J; Schlepckow K; Wöhnert J; Schwalbe H RNA Biol; 2014; 11(5):655-6. PubMed ID: 24921630 [TBL] [Abstract][Full Text] [Related]
2. Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli. Drogalis LK; Batey RT PLoS One; 2020; 15(12):e0243155. PubMed ID: 33259551 [TBL] [Abstract][Full Text] [Related]
4. Pseudoknot preorganization of the preQ1 class I riboswitch. Santner T; Rieder U; Kreutz C; Micura R J Am Chem Soc; 2012 Jul; 134(29):11928-31. PubMed ID: 22775200 [TBL] [Abstract][Full Text] [Related]
5. Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain. Gilbert SD; Stoddard CD; Wise SJ; Batey RT J Mol Biol; 2006 Jun; 359(3):754-68. PubMed ID: 16650860 [TBL] [Abstract][Full Text] [Related]
6. Identification of a tertiary interaction important for cooperative ligand binding by the glycine riboswitch. Erion TV; Strobel SA RNA; 2011 Jan; 17(1):74-84. PubMed ID: 21098652 [TBL] [Abstract][Full Text] [Related]
7. Riboswitch structure: an internal residue mimicking the purine ligand. Delfosse V; Bouchard P; Bonneau E; Dagenais P; Lemay JF; Lafontaine DA; Legault P Nucleic Acids Res; 2010 Apr; 38(6):2057-68. PubMed ID: 20022916 [TBL] [Abstract][Full Text] [Related]
8. Ligand-induced stabilization of the aptamer terminal helix in the add adenine riboswitch. Di Palma F; Colizzi F; Bussi G RNA; 2013 Nov; 19(11):1517-24. PubMed ID: 24051105 [TBL] [Abstract][Full Text] [Related]
9. Structure-guided mutational analysis of gene regulation by the Bacillus subtilis pbuE adenine-responsive riboswitch in a cellular context. Marcano-Velázquez JG; Batey RT J Biol Chem; 2015 Feb; 290(7):4464-75. PubMed ID: 25550163 [TBL] [Abstract][Full Text] [Related]
10. Ligand-modulated folding of the full-length adenine riboswitch probed by NMR and single-molecule FRET spectroscopy. Warhaut S; Mertinkus KR; Höllthaler P; Fürtig B; Heilemann M; Hengesbach M; Schwalbe H Nucleic Acids Res; 2017 May; 45(9):5512-5522. PubMed ID: 28204648 [TBL] [Abstract][Full Text] [Related]
11. Loop-loop interaction in an adenine-sensing riboswitch: a molecular dynamics study. Allnér O; Nilsson L; Villa A RNA; 2013 Jul; 19(7):916-26. PubMed ID: 23716711 [TBL] [Abstract][Full Text] [Related]
12. Molecular dynamics simulation of the binding process of ligands to the add adenine riboswitch aptamer. Bao L; Wang J; Xiao Y Phys Rev E; 2019 Aug; 100(2-1):022412. PubMed ID: 31574664 [TBL] [Abstract][Full Text] [Related]
13. Interplay of 'induced fit' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch. Noeske J; Buck J; Fürtig B; Nasiri HR; Schwalbe H; Wöhnert J Nucleic Acids Res; 2007; 35(2):572-83. PubMed ID: 17175531 [TBL] [Abstract][Full Text] [Related]
14. Dissecting the influence of Mg2+ on 3D architecture and ligand-binding of the guanine-sensing riboswitch aptamer domain. Buck J; Noeske J; Wöhnert J; Schwalbe H Nucleic Acids Res; 2010 Jul; 38(12):4143-53. PubMed ID: 20200045 [TBL] [Abstract][Full Text] [Related]
15. The dynamic nature of RNA as key to understanding riboswitch mechanisms. Haller A; Soulière MF; Micura R Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902 [TBL] [Abstract][Full Text] [Related]
16. Multivector fluorescence analysis of the xpt guanine riboswitch aptamer domain and the conformational role of guanine. Brenner MD; Scanlan MS; Nahas MK; Ha T; Silverman SK Biochemistry; 2010 Mar; 49(8):1596-605. PubMed ID: 20108980 [TBL] [Abstract][Full Text] [Related]
17. Conformational flexibility of adenine riboswitch aptamer in apo and bound states using NMR and an X-ray free electron laser. Ding J; Swain M; Yu P; Stagno JR; Wang YX J Biomol NMR; 2019 Sep; 73(8-9):509-518. PubMed ID: 31606878 [TBL] [Abstract][Full Text] [Related]
18. Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics. Liberman JA; Suddala KC; Aytenfisu A; Chan D; Belashov IA; Salim M; Mathews DH; Spitale RC; Walter NG; Wedekind JE Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3485-94. PubMed ID: 26106162 [TBL] [Abstract][Full Text] [Related]
19. Ligand-induced folding of the guanine-sensing riboswitch is controlled by a combined predetermined induced fit mechanism. Ottink OM; Rampersad SM; Tessari M; Zaman GJ; Heus HA; Wijmenga SS RNA; 2007 Dec; 13(12):2202-12. PubMed ID: 17959930 [TBL] [Abstract][Full Text] [Related]
20. Direct observation of hierarchical folding in single riboswitch aptamers. Greenleaf WJ; Frieda KL; Foster DA; Woodside MT; Block SM Science; 2008 Feb; 319(5863):630-3. PubMed ID: 18174398 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]