These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 2492181)

  • 1. Dimer-tetramer equilibrium of glutathione reductase from the cyanobacterium Spirulina maxima.
    Rendón JL; Mendoza-Hernández G
    Arch Biochem Biophys; 1989 Jan; 268(1):255-63. PubMed ID: 2492181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification, properties, and oligomeric structure of glutathione reductase from the cyanobacterium Spirulina maxima.
    Rendón JL; Calcagno M; Mendoza-Hernández G; Ondarza RN
    Arch Biochem Biophys; 1986 Jul; 248(1):215-23. PubMed ID: 3089164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unfolding kinetics of glutathione reductase from cyanobacterium Spirulina maxima.
    Rendón JL; Mendoza-Hernández G
    Arch Biochem Biophys; 2001 Mar; 387(2):265-72. PubMed ID: 11370850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of inorganic phosphate on the self-associating properties of glutathione reductase from Spirulina maxima.
    Rendón JL; Mendoza-Hernández G
    Biochem Mol Biol Int; 1993 Nov; 31(4):701-8. PubMed ID: 8298499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Denaturing behavior of glutathione reductase from cyanobacterium Spirulina maxima in guanidine hydrochloride.
    Rendón JL; Pardo JP; Mendoza-Hernández G; Rojo-Domínguez A; Hernández-Arana A
    Arch Biochem Biophys; 1995 Apr; 318(2):264-70. PubMed ID: 7733653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal denaturation of glutathione reductase from cyanobacterium Spirulina maxima.
    Rojo-Domínguez A; Hernández-Arana A; Mendoza-Hernández G; Rendón JL
    Biochem Mol Biol Int; 1997 Jul; 42(3):631-9. PubMed ID: 9247721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the tetramer-dimer-monomer equilibrium of the enzymatically active subunits of pigeon liver malic enzyme.
    Huang TM; Chang GG
    Biochemistry; 1992 Dec; 31(50):12658-64. PubMed ID: 1472502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics of concanavalin A dimer-tetramer self-association: sedimentation equilibrium studies.
    Senear DF; Teller DC
    Biochemistry; 1981 May; 20(11):3076-83. PubMed ID: 7248268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human platelet factor 4 subunit association/dissociation thermodynamics and kinetics.
    Chen MJ; Mayo KH
    Biochemistry; 1991 Jul; 30(26):6402-11. PubMed ID: 2054346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of glutathione reductase from porcine erythrocytes.
    Boggaram V; Larson K; Mannervik B
    Biochim Biophys Acta; 1978 Dec; 527(2):337-47. PubMed ID: 31912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic characterization of the pH-dependent oligomerization of R67 dihydrofolate reductase.
    Méjean A; Bodenreider C; Schuerer K; Goldberg ME
    Biochemistry; 2001 Jul; 40(27):8169-79. PubMed ID: 11434787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Titration of histidine 62 in R67 dihydrofolate reductase is linked to a tetramer<-->two-dimer equilibrium.
    Nichols R; Weaver CD; Eisenstein E; Blakley RL; Appleman J; Huang TH; Huang FY; Howell EE
    Biochemistry; 1993 Feb; 32(7):1695-706. PubMed ID: 8439535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Varying apparent rate constant: determination of uptake and release of protons during tetramer-dimer dissociation in human hemoglobin A.
    Babalola JO; Babarinde NA; Akingbola TS
    Ital J Biochem; 2005; 54(3-4):240-7. PubMed ID: 16688933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation-reactivation of two-electron reduced Escherichia coli glutathione reductase involving a dimer-monomer equilibrium.
    Arscott LD; Drake DM; Williams CH
    Biochemistry; 1989 Apr; 28(8):3591-8. PubMed ID: 2663073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutual effects of protons, NaCl, and oxygen on the dimer-tetramer assembly of human hemoglobin. The dimer Bohr effect.
    Chu AH; Ackers GK
    J Biol Chem; 1981 Feb; 256(3):1199-205. PubMed ID: 7451499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutathione reductase from human erythrocytes. Molecular weight, subunit composition and aggregation properties.
    Worthington DJ; Rosemeyer MA
    Eur J Biochem; 1975 Dec; 60(2):459-66. PubMed ID: 1274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissociation and association of the HIV-1 protease dimer subunits: equilibria and rates.
    Darke PL; Jordan SP; Hall DL; Zugay JA; Shafer JA; Kuo LC
    Biochemistry; 1994 Jan; 33(1):98-105. PubMed ID: 8286367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic variants of human erythrocyte glucose-6-phosphate dehydrogenase. Kinetic and thermodynamic parameters of variants A, B, and A- in relation to quaternary structure.
    Babalola AO; Beetlestone JG; Luzzatto L
    J Biol Chem; 1976 May; 251(10):2993-3002. PubMed ID: 5448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamics of dimer and tetramer formations in rabbit muscle phosphofructokinase.
    Luther MA; Cai GZ; Lee JC
    Biochemistry; 1986 Dec; 25(24):7931-7. PubMed ID: 2948566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of the aggregation state of maize phosphoenolpyruvate carboxylase: evidence from dynamic light-scattering measurements.
    Wu MX; Meyer CR; Willeford KO; Wedding RT
    Arch Biochem Biophys; 1990 Sep; 281(2):324-9. PubMed ID: 2393302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.