These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 24921989)

  • 41. Design of energy band alignment at the Zn(1-x)Mg(x)O/Cu(In,Ga)Se2 interface for Cd-free Cu(In,Ga)Se2 solar cells.
    Lee CS; Larina L; Shin YM; Al-Ammar EA; Ahn BT
    Phys Chem Chem Phys; 2012 Apr; 14(14):4789-95. PubMed ID: 22382807
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Impact of different Na-incorporating methods on Cu(In,Ga)Se2 thin film solar cells with a low-Na substrate.
    Ye S; Tan X; Jiang M; Fan B; Tang K; Zhuang S
    Appl Opt; 2010 Mar; 49(9):1662-5. PubMed ID: 20300164
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis and Nanostructures of Metal Selenide Precursors for Cu(In,Ga)Se2 Thin-Film Solar Cells.
    Cha JH; Noh SJ; Jung DY
    ChemSusChem; 2015 Jul; 8(14):2407-13. PubMed ID: 25959012
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chalcogenization-Derived Band Gap Grading in Solution-Processed CuIn(x)Ga(1-x)(Se,S)₂ Thin-Film Solar Cells.
    Park SJ; Jeon HS; Cho JW; Hwang YJ; Park KS; Shim HS; Song JK; Cho Y; Kim DW; Kim J; Min BK
    ACS Appl Mater Interfaces; 2015 Dec; 7(49):27391-6. PubMed ID: 26595379
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Photovoltaic Performance and Interface Behaviors of Cu(In,Ga)Se2 Solar Cells with a Sputtered-Zn(O,S) Buffer Layer by High-Temperature Annealing.
    Wi JH; Kim TG; Kim JW; Lee WJ; Cho DH; Han WS; Chung YD
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17425-32. PubMed ID: 26192202
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Study of band structure at the Zn(S,O,OH)/Cu(In,Ga)Se2 interface via rapid thermal annealing and their effect on the photovoltaic properties.
    Shin DH; Kim ST; Kim JH; Kang HJ; Ahn BT; Kwon H
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):12921-7. PubMed ID: 24175717
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Local photocurrent mapping and cell performance behaviour on a nanometre scale for monolithically interconnected Cu(In,Ga)Se
    Haggui M; Reinhold B; Andrae P; Greiner D; Schmid M; Fumagalli P
    J Microsc; 2017 Oct; 268(1):66-72. PubMed ID: 28548293
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Band gap grading and photovoltaic performance of solution-processed Cu(In,Ga)S2 thin-film solar cells.
    Sohn SH; Han NS; Park YJ; Park SM; An HS; Kim DW; Min BK; Song JK
    Phys Chem Chem Phys; 2014 Dec; 16(48):27112-8. PubMed ID: 25387997
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Superstrate CuInS2 photovoltaics with enhanced performance using a CdS/ZnO nanorod array.
    Lee D; Yong K
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6758-65. PubMed ID: 23163478
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Broadband antireflective nano-cones for tandem solar cells.
    Buencuerpo J; Llorens JM; Dotor ML; Ripalda JM
    Opt Express; 2015 Apr; 23(7):A322-36. PubMed ID: 25968798
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Preparation of large area Al-ZnO thin film by DC magnetron sputtering].
    Jiao F; Liao C; Han JF; Zhou Z
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):698-701. PubMed ID: 19455803
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells.
    Kim A; Won Y; Woo K; Kim CH; Moon J
    ACS Nano; 2013 Feb; 7(2):1081-91. PubMed ID: 23330971
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fabrication and characterization of hybrid Si/ZnO subwavelength structures as efficient antireflection layer.
    Baek SH; Park JS; Jung YI; Park IK; Kim JH
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6359-61. PubMed ID: 24205661
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Efficiency improvement of silicon solar cells enabled by ZnO nanowhisker array coating.
    Yu X; Wang D; Lei D; Li G; Yang D
    Nanoscale Res Lett; 2012 Jun; 7(1):306. PubMed ID: 22704578
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Solution-processed highly efficient Cu2ZnSnSe4 thin film solar cells by dissolution of elemental Cu, Zn, Sn, and Se powders.
    Yang Y; Wang G; Zhao W; Tian Q; Huang L; Pan D
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):460-4. PubMed ID: 25494493
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optimization of the ZnS Buffer Layer by Chemical Bath Deposition for Cu(In,Ga)Se2 Solar Cells.
    Jeon DH; Hwang DK; Kim DH; Kang JK; Lee CS
    J Nanosci Nanotechnol; 2016 May; 16(5):5398-402. PubMed ID: 27483938
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrical impact of MoSe2 on CIGS thin-film solar cells.
    Hsiao KJ; Liu JD; Hsieh HH; Jiang TS
    Phys Chem Chem Phys; 2013 Nov; 15(41):18174-8. PubMed ID: 24068110
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Controllable Growth of Ga Film Electrodeposited from Aqueous Solution and Cu(In,Ga)Se
    Bi J; Ao J; Gao Q; Zhang Z; Sun G; He Q; Zhou Z; Sun Y; Zhang Y
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18682-18690. PubMed ID: 28530386
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of Randomly Grown Morphology of ZnO Nanorods in Inverted Organic Solar Cells.
    Zafar M; Khan SA; Sher F; Ali M; Manzoor T; Rahman SA; Kim WY; Saleem M; Kim DH
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4414-4418. PubMed ID: 31968486
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Growth of Cu2ZnSnSe4 Film under Controllable Se Vapor Composition and Impact of Low Cu Content on Solar Cell Efficiency.
    Li J; Wang H; Wu L; Chen C; Zhou Z; Liu F; Sun Y; Han J; Zhang Y
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10283-92. PubMed ID: 27058738
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.