These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 24922087)

  • 1. Atomic-scale wear of amorphous hydrogenated carbon during intermittent contact: a combined study using experiment, simulation, and theory.
    Vahdat V; Ryan KE; Keating PL; Jiang Y; Adiga SP; Schall JD; Turner KT; Harrison JA; Carpick RW
    ACS Nano; 2014 Jul; 8(7):7027-40. PubMed ID: 24922087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanics of interaction and atomic-scale wear of amplitude modulation atomic force microscopy probes.
    Vahdat V; Grierson DS; Turner KT; Carpick RW
    ACS Nano; 2013 Apr; 7(4):3221-35. PubMed ID: 23506316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Practical method to limit tip-sample contact stress and prevent wear in amplitude modulation atomic force microscopy.
    Vahdat V; Carpick RW
    ACS Nano; 2013 Nov; 7(11):9836-50. PubMed ID: 24131354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Method for characterizing nanoscale wear of atomic force microscope tips.
    Liu J; Notbohm JK; Carpick RW; Turner KT
    ACS Nano; 2010 Jul; 4(7):3763-72. PubMed ID: 20575565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulated adhesion between realistic hydrocarbon materials: effects of composition, roughness, and contact point.
    Ryan KE; Keating PL; Jacobs TD; Grierson DS; Turner KT; Carpick RW; Harrison JA
    Langmuir; 2014 Mar; 30(8):2028-37. PubMed ID: 24494582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tribochemical Wear of Diamond-Like Carbon-Coated Atomic Force Microscope Tips.
    Liu J; Jiang Y; Grierson DS; Sridharan K; Shao Y; Jacobs TDB; Falk ML; Carpick RW; Turner KT
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35341-35348. PubMed ID: 28960949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preventing nanoscale wear of atomic force microscopy tips through the use of monolithic ultrananocrystalline diamond probes.
    Liu J; Grierson DS; Moldovan N; Notbohm J; Li S; Jaroenapibal P; O'Connor SD; Sumant AV; Neelakantan N; Carlisle JA; Turner KT; Carpick RW
    Small; 2010 May; 6(10):1140-9. PubMed ID: 20486220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic-scale friction on diamond: a comparison of different sliding directions on (001) and (111) surfaces using MD and AFM.
    Gao G; Cannara RJ; Carpick RW; Harrison JA
    Langmuir; 2007 May; 23(10):5394-405. PubMed ID: 17407330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon nanotubes: a promising standard for quantitative evaluation of AFM tip apex geometry.
    Wang Y; Chen X
    Ultramicroscopy; 2007; 107(4-5):293-8. PubMed ID: 17011708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrananocrystalline diamond tip integrated onto a heated atomic force microscope cantilever.
    Kim HJ; Moldovan N; Felts JR; Somnath S; Dai Z; Jacobs TD; Carpick RW; Carlisle JA; King WP
    Nanotechnology; 2012 Dec; 23(49):495302. PubMed ID: 23149947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diamond-modified AFM probes: from diamond nanowires to atomic force microscopy-integrated boron-doped diamond electrodes.
    Smirnov W; Kriele A; Hoffmann R; Sillero E; Hees J; Williams OA; Yang N; Kranz C; Nebel CE
    Anal Chem; 2011 Jun; 83(12):4936-41. PubMed ID: 21534601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of fracture during the approach process and wear mechanism of a silicon AFM tip.
    Chung KH; Lee YH; Kim DE
    Ultramicroscopy; 2005 Jan; 102(2):161-71. PubMed ID: 15590139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wear-resistant diamond nanoprobe tips with integrated silicon heater for tip-based nanomanufacturing.
    Fletcher PC; Felts JR; Dai Z; Jacobs TD; Zeng H; Lee W; Sheehan PE; Carlisle JA; Carpick RW; King WP
    ACS Nano; 2010 Jun; 4(6):3338-44. PubMed ID: 20481445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulation of amplitude modulation atomic force microscopy.
    Hu X; Egberts P; Dong Y; Martini A
    Nanotechnology; 2015 Jun; 26(23):235705. PubMed ID: 25990713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tip wear and tip breakage in high-speed atomic force microscopes.
    Strahlendorff T; Dai G; Bergmann D; Tutsch R
    Ultramicroscopy; 2019 Jun; 201():28-37. PubMed ID: 30925297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wear-less floating contact imaging of polymer surfaces.
    Knoll A; Rothuizen H; Gotsmann B; Duerig U
    Nanotechnology; 2010 May; 21(18):185701. PubMed ID: 20378942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size Dependence of Nanoscale Wear of Silicon Carbide.
    Tangpatjaroen C; Grierson D; Shannon S; Jakes JE; Szlufarska I
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1929-1940. PubMed ID: 27997110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on effects of scan parameters on the image quality and tip wear in AFM tapping mode.
    Xue B; Yan Y; Hu Z; Zhao X
    Scanning; 2014; 36(2):263-9. PubMed ID: 23740613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attachment of carbon nanotubes to atomic force microscope probes.
    Gibson CT; Carnally S; Roberts CJ
    Ultramicroscopy; 2007 Oct; 107(10-11):1118-22. PubMed ID: 17644251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wear characteristics of diamond-coated atomic force microscope probe.
    Chung KH; Kim DE
    Ultramicroscopy; 2007 Dec; 108(1):1-10. PubMed ID: 17367934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.