These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 24922094)

  • 1. Removal of uranium and gross radioactivity from coal bottom ash by CaCl2 roasting followed by HNO3 leaching.
    Lei X; Qi G; Sun Y; Xu H; Wang Y
    J Hazard Mater; 2014 Jul; 276():346-52. PubMed ID: 24922094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of enhanced low-quality coal oxidative desulphurization and deashing by using HNO3 and microwave pretreatment.
    Ma X; Zhang M; Min F
    Environ Technol; 2014; 35(1-4):36-41. PubMed ID: 24600838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uranium speciation in coal bottom ash investigated via X-ray absorption fine structure and X-ray photoelectron spectra.
    Sun Y; Wu M; Zheng L; Wang B; Wang Y
    J Environ Sci (China); 2018 Dec; 74():88-94. PubMed ID: 30340678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of chloride from MSWI fly ash.
    Chen WS; Chang FC; Shen YH; Tsai MS; Ko CH
    J Hazard Mater; 2012 Oct; 237-238():116-20. PubMed ID: 22947185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution and mode of occurrence of uranium in bottom ash derived from high-germanium coals.
    Sun Y; Qi G; Lei X; Xu H; Li L; Yuan C; Wang Y
    J Environ Sci (China); 2016 May; 43():91-98. PubMed ID: 27155413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vaporization Mechanisms of Water-Insoluble Cs in Ash During Thermal Treatment with Calcium Chloride Addition.
    Jiao F; Iwata N; Kinoshita N; Kawaguchi M; Asada M; Honda M; Sueki K; Ninomiya Y
    Environ Sci Technol; 2016 Dec; 50(24):13328-13334. PubMed ID: 27993040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term leaching of uranium from different waste matrices.
    Patra AC; Sumesh CG; Mohapatra S; Sahoo SK; Tripathi RM; Puranik VD
    J Environ Manage; 2011 Mar; 92(3):919-25. PubMed ID: 21084148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios.
    Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F
    Waste Manag; 2012 Apr; 32(4):759-68. PubMed ID: 22226920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A technique for sequential leaching of coal and fly ash resulting in good recovery of trace elements.
    Norris P; Chen CW; Pan WP
    Anal Chim Acta; 2010 Mar; 663(1):39-42. PubMed ID: 20172094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mineralogical Properties of a Refractory Tantalum-Niobium Slag and the Effect of Roasting on the Leaching of Uranium-Thorium.
    Huang M; Hu K; Li X; Wang Y; Ouyang J; Zhou L; Liu Z
    Toxics; 2022 Aug; 10(8):. PubMed ID: 36006148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimony leaching from MSWI bottom ash: modelling of the effect of pH and carbonation.
    Cornelis G; Van Gerven T; Vandecasteele C
    Waste Manag; 2012 Feb; 32(2):278-86. PubMed ID: 22035902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural weathering in dry disposed ash dump: Insight from chemical, mineralogical and geochemical analysis of fresh and unsaturated drilled cores.
    Akinyemi SA; Akinlua A; Gitari WM; Khuse N; Eze P; Akinyeye RO; Petrik LF
    J Environ Manage; 2012 Jul; 102():96-107. PubMed ID: 22446137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organic carbon leaching behavior from incinerator bottom ash.
    Guimaraes AL; Okuda T; Nishijima W; Okada M
    J Hazard Mater; 2006 Sep; 137(2):1096-101. PubMed ID: 16675109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching.
    Santos RM; Mertens G; Salman M; Cizer Ö; Van Gerven T
    J Environ Manage; 2013 Oct; 128():807-21. PubMed ID: 23867838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fate of the naturally occurring radioactive materials during treatment of acid mine drainage with coal fly ash and aluminium hydroxide.
    Madzivire G; Maleka PP; Vadapalli VR; Gitari WM; Lindsay R; Petrik LF
    J Environ Manage; 2014 Jan; 133():12-7. PubMed ID: 24355687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decontamination of uranium-contaminated waste oil using supercritical fluid and nitric acid.
    Sung J; Kim J; Lee Y; Seol J; Ryu J; Park K
    Radiat Prot Dosimetry; 2011 Jul; 146(1-3):163-6. PubMed ID: 21493611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and numerical analysis of metal leaching from fly ash-amended highway bases.
    Cetin B; Aydilek AH; Li L
    Waste Manag; 2012 May; 32(5):965-78. PubMed ID: 22257699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glass-ceramic from mixtures of bottom ash and fly ash.
    Vu DH; Wang KS; Chen JH; Nam BX; Bac BH
    Waste Manag; 2012 Dec; 32(12):2306-14. PubMed ID: 22748917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneous Fenton-like catalytic removal of p-nitrophenol in water using acid-activated fly ash.
    Zhang A; Wang N; Zhou J; Jiang P; Liu G
    J Hazard Mater; 2012 Jan; 201-202():68-73. PubMed ID: 22169244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High fire resistance in blocks containing coal combustion fly ashes and bottom ash.
    García Arenas C; Marrero M; Leiva C; Solís-Guzmán J; Vilches Arenas LF
    Waste Manag; 2011 Aug; 31(8):1783-9. PubMed ID: 21511456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.