These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 2492213)

  • 21. Endothelium-derived nitric oxide relaxes nonvascular smooth muscle.
    Buga GM; Gold ME; Wood KS; Chaudhuri G; Ignarro LJ
    Eur J Pharmacol; 1989 Feb; 161(1):61-72. PubMed ID: 2542037
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Endothelium-derived nitric oxide plays a larger role in pulmonary veins than in arteries of newborn lambs.
    Gao Y; Zhou H; Raj JU
    Circ Res; 1995 Apr; 76(4):559-65. PubMed ID: 7895331
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Depletion of arterial L-arginine causes reversible tolerance to endothelium-dependent relaxation.
    Gold ME; Bush PA; Ignarro LJ
    Biochem Biophys Res Commun; 1989 Oct; 164(2):714-21. PubMed ID: 2510722
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relaxation of intrapulmonary artery and vein by nitrogen oxide-containing vasodilators and cyclic GMP.
    Edwards JC; Ignarro LJ; Hyman AL; Kadowitz PJ
    J Pharmacol Exp Ther; 1984 Jan; 228(1):33-42. PubMed ID: 6319670
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bradykinin-induced endothelium-dependent relaxation of bovine intrapulmonary artery and vein.
    Gruetter CA; Lemke SM
    Eur J Pharmacol; 1986 Apr; 122(3):363-7. PubMed ID: 3011448
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NG-monomethyl L-arginine inhibits endothelium-derived relaxing factor-stimulated cyclic GMP accumulation in cocultures of endothelial and vascular smooth muscle cells by an action specific to the endothelial cell.
    Johns RA; Peach MJ; Linden J; Tichotsky A
    Circ Res; 1990 Oct; 67(4):979-85. PubMed ID: 2170053
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ethanol relaxes pulmonary artery by release of prostaglandin and nitric oxide.
    Greenberg SS; Xie J; Wang Y; Kolls J; Shellito J; Nelson S; Summer WR
    Alcohol; 1993; 10(1):21-9. PubMed ID: 8447963
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pharmacological reactivity of human epicardial coronary arteries: characterization of relaxation responses to endothelium-derived relaxing factor.
    Stork AP; Cocks TM
    Br J Pharmacol; 1994 Dec; 113(4):1099-104. PubMed ID: 7889260
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dissimilarities between methylene blue and cyanide on relaxation and cyclic GMP formation in endothelium-intact intrapulmonary artery caused by nitrogen oxide-containing vasodilators and acetylcholine.
    Ignarro LJ; Harbison RG; Wood KS; Kadowitz PJ
    J Pharmacol Exp Ther; 1986 Jan; 236(1):30-6. PubMed ID: 3001291
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Endothelium-derived nitric oxide: actions and properties.
    Ignarro LJ
    FASEB J; 1989 Jan; 3(1):31-6. PubMed ID: 2642868
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Atriopeptin II relaxes and elevates cGMP in bovine pulmonary artery but not vein.
    Ignarro LJ; Wood KS; Harbison RG; Kadowitz PJ
    J Appl Physiol (1985); 1986 Apr; 60(4):1128-33. PubMed ID: 3009386
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thimerosal blocks stimulated but not basal release of endothelium-derived relaxing factor (EDRF) in dog isolated coronary artery.
    Crack P; Cocks T
    Br J Pharmacol; 1992 Oct; 107(2):566-72. PubMed ID: 1384915
    [TBL] [Abstract][Full Text] [Related]  

  • 33. L-arginine evokes both endothelium-dependent and -independent relaxations in L-arginine-depleted aortas of the rat.
    Schini VB; Vanhoutte PM
    Circ Res; 1991 Jan; 68(1):209-16. PubMed ID: 1984863
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Developmental changes in endothelium-dependent relaxation of pulmonary arteries: role of EDNO and prostanoids.
    O'Donnell DC; Tod ML; Gordon JB
    J Appl Physiol (1985); 1996 Nov; 81(5):2013-9. PubMed ID: 8941523
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prostacyclin-induced relaxations of small porcine pulmonary arteries are enhanced by the basal release of endothelium-derived nitric oxide through an effect on cyclic GMP-inhibited-cyclic AMP phosphodiesterase.
    Zellers TM; Wu YQ; McCormick J; Vanhoutte PM
    Acta Pharmacol Sin; 2000 Feb; 21(2):131-8. PubMed ID: 11263259
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acetylcholine- and flow-induced production and release of nitric oxide in arterial and venous endothelial cells.
    Fukaya Y; Ohhashi T
    Am J Physiol; 1996 Jan; 270(1 Pt 2):H99-106. PubMed ID: 8769739
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impairment of endothelium-dependent pulmonary-artery relaxation in chronic obstructive lung disease.
    Dinh-Xuan AT; Higenbottam TW; Clelland CA; Pepke-Zaba J; Cremona G; Butt AY; Large SR; Wells FC; Wallwork J
    N Engl J Med; 1991 May; 324(22):1539-47. PubMed ID: 2027358
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of nitric oxide and guanosine 3',5'-cyclic monophosphate in mediating nonadrenergic, noncholinergic relaxation in guinea-pig pulmonary arteries.
    Liu SF; Crawley DE; Rohde JA; Evans TW; Barnes PJ
    Br J Pharmacol; 1992 Nov; 107(3):861-6. PubMed ID: 1335345
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isoflurane anesthesia attenuates endothelium-dependent pulmonary vasorelaxation by inhibiting the synergistic interaction between nitric oxide and prostacyclin.
    Gambone LM; Murray PA; Flavahan NA
    Anesthesiology; 1997 Apr; 86(4):936-44. PubMed ID: 9105238
    [TBL] [Abstract][Full Text] [Related]  

  • 40. S-nitrosothiols as vasodilators: implications regarding tolerance to nitric oxide-containing vasodilators.
    Henry PJ; Drummer OH; Horowitz JD
    Br J Pharmacol; 1989 Nov; 98(3):757-66. PubMed ID: 2511992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.