These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 24922237)

  • 1. Imperfectly geometric shapes of nanograting structures as solar absorbers with superior performance for solar cells.
    Nguyen-Huu N; Cada M; Pištora J
    Opt Express; 2014 Mar; 22 Suppl 2():A282-94. PubMed ID: 24922237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imperfectly geometric shapes of nanograting structures as solar absorbers with superior performance for solar cells.
    Nguyen-Huu N; Cada M; Pištora J
    Opt Express; 2014 Mar; 22(5):A282-94. PubMed ID: 24800284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of optical absorptance of one-dimensionally periodic silicon gratings as solar absorbers for solar cells.
    Nguyen-Huu N; Cada M; Pištora J
    Opt Express; 2014 Jan; 22 Suppl 1():A68-79. PubMed ID: 24922001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perfect selective metamaterial solar absorbers.
    Wang H; Wang L
    Opt Express; 2013 Nov; 21 Suppl 6():A1078-93. PubMed ID: 24514927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband wide-angle antireflection enhancement in AZO/Si shell/core subwavelength grating structures with hydrophobic surface for Si-based solar cells.
    Leem JW; Song YM; Yu JS
    Opt Express; 2011 Sep; 19 Suppl 5():A1155-64. PubMed ID: 21935259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficiency enhancement in Cu2ZnSnS4 solar cells with subwavelength grating nanostructures.
    Kuo SY; Hsieh MY
    Nanoscale; 2014 Jul; 6(13):7553-9. PubMed ID: 24890020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Angular solar absorptance of absorbers used in solar thermal collectors.
    Tesfamichael T; Wäckelgård E
    Appl Opt; 1999 Jul; 38(19):4189-97. PubMed ID: 18323901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polarization-independent and omnidirectional nearly perfect absorber with ultra-thin 2D subwavelength metal grating in the visible region.
    Zhou W; Li K; Song C; Hao P; Chi M; Yu M; Wu Y
    Opt Express; 2015 Jun; 23(11):A413-8. PubMed ID: 26072865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced absorptance of the assembly structure incorporating germanium nanorods and two-dimensional silicon gratings for photovoltaics.
    Jia Z; Cheng Q; Song J; Zhou Y; Liu Y
    Appl Opt; 2016 Nov; 55(31):8821-8828. PubMed ID: 27828280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell backed by a metallic surface-relief grating.
    Solano M; Faryad M; Hall AS; Mallouk TE; Monk PB; Lakhtakia A
    Appl Opt; 2013 Feb; 52(5):966-79. PubMed ID: 23400058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-trapping schemes for silicon thin-film solar cells via super-quadratic subwavelength gratings.
    Chen K; Wu R; Zheng H; Wang H; Zhang G; Chen S
    Appl Opt; 2019 Nov; 58(31):8702-8712. PubMed ID: 31873351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Optical Confinement Enriching the Power Conversion Efficiency of Integrated 3D Grating Organic Solar Cell.
    Zohar M; Avrahamy R; Hava S; Milgrom B; Rimon E
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of the light-trapping effect using a subwavelength-structured optical disk.
    Shih HF; Hsieh SJ; Liao WY
    Appl Opt; 2009 Sep; 48(25):F49-54. PubMed ID: 19724313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromagnetic resonance modes on a two-dimensional tandem grating and its application for broadband absorption in the visible spectrum.
    Han S; Lee BJ
    Opt Express; 2016 Jan; 24(2):A202-14. PubMed ID: 26832574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual broadband infrared absorptance enhanced by magnetic polaritons using graphene-covered compound metal gratings.
    Nguyen-Huu N; Pistora J; Cada M
    Opt Express; 2019 Oct; 27(21):30182-30190. PubMed ID: 31684268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure.
    Peng Y; Zang X; Zhu Y; Shi C; Chen L; Cai B; Zhuang S
    Opt Express; 2015 Feb; 23(3):2032-9. PubMed ID: 25836074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectric-based subwavelength metallic meanders for wide-angle band absorbers.
    Shen S; Qiao W; Ye Y; Zhou Y; Chen L
    Opt Express; 2015 Jan; 23(2):963-70. PubMed ID: 25835855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective light trapping in c-Si thin-film solar cells with a dual-layer split grating.
    Chen K; Zheng N; Wu S; He J; Yu Y; Zheng H
    Appl Opt; 2021 Nov; 60(33):10312-10321. PubMed ID: 34807039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controllable synthesis of periodic flower-like ZnO nanostructures on Si subwavelength grating structures.
    Ko YH; Leem JW; Yu JS
    Nanotechnology; 2011 May; 22(20):205604. PubMed ID: 21444949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silicon based mid-IR super absorber using hyperbolic metamaterial.
    Desouky M; Mahmoud AM; Swillam MA
    Sci Rep; 2018 Feb; 8(1):2036. PubMed ID: 29391401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.