These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 24922282)

  • 1. Virtual scarce water in China.
    Feng K; Hubacek K; Pfister S; Yu Y; Sun L
    Environ Sci Technol; 2014 Jul; 48(14):7704-13. PubMed ID: 24922282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncovering regional disparity of China's water footprint and inter-provincial virtual water flows.
    Dong H; Geng Y; Fujita T; Fujii M; Hao D; Yu X
    Sci Total Environ; 2014 Dec; 500-501():120-30. PubMed ID: 25222751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Worse than imagined: Unidentified virtual water flows in China.
    Cai B; Wang C; Zhang B
    J Environ Manage; 2017 Jul; 196():681-691. PubMed ID: 28365554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pollution exacerbates interregional flows of virtual scarce water driven by energy demand in China.
    Li H; Liang Y; Chen Q; Liang S; Jetashree ; Yang Z
    Water Res; 2022 Sep; 223():118980. PubMed ID: 35987035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiregional input-output model for the evaluation of Spanish water flows.
    Cazcarro I; Duarte R; Sánchez Chóliz J
    Environ Sci Technol; 2013; 47(21):12275-83. PubMed ID: 24028336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decline of virtual water inequality in China's inter-provincial trade: An environmental economic trade-off analysis.
    Xin M; Wang J; Xing Z
    Sci Total Environ; 2022 Feb; 806(Pt 2):150524. PubMed ID: 34852433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water footprint characteristic of less developed water-rich regions: Case of Yunnan, China.
    Qian Y; Dong H; Geng Y; Zhong S; Tian X; Yu Y; Chen Y; Moss DA
    Water Res; 2018 Sep; 141():208-216. PubMed ID: 29793160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Land-Water-Food Nexus and indications of crop adjustment for water shortage solution.
    Ren D; Yang Y; Yang Y; Richards K; Zhou X
    Sci Total Environ; 2018 Jun; 626():11-21. PubMed ID: 29331834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: A study for China (1978-2008).
    Zhuo L; Mekonnen MM; Hoekstra AY
    Water Res; 2016 May; 94():73-85. PubMed ID: 26938494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spillover risk analysis of virtual water trade based on multi-regional input-output model -A case study.
    Zhang W; Fan X; Liu Y; Wang S; Chen B
    J Environ Manage; 2020 Dec; 275():111242. PubMed ID: 32861004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer of virtual water embodied in food: A new perspective.
    Zhai M; Huang G; Liu L; Xu X; Li J
    Sci Total Environ; 2019 Apr; 659():872-883. PubMed ID: 31096417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applying the input-output method to account for water footprint and virtual water trade in the Haihe River basin in China.
    Zhao X; Yang H; Yang Z; Chen B; Qin Y
    Environ Sci Technol; 2010 Dec; 44(23):9150-6. PubMed ID: 20945890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of crop production, trade, and consumption from the perspective of water resources: a case study of the Hetao irrigation district, China, for 1960-2010.
    Liu J; Sun S; Wu P; Wang Y; Zhao X
    Sci Total Environ; 2015 Feb; 505():1174-81. PubMed ID: 25461115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dynamic change of energy supply and demand structure within China: a perspective from the national value chain.
    Fan N; Ji H
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):11873-11892. PubMed ID: 36098913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quality matters: Pollution exacerbates water scarcity and sectoral output risks in China.
    Li J; Yang J; Liu M; Ma Z; Fang W; Bi J
    Water Res; 2022 Oct; 224():119059. PubMed ID: 36126628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can virtual water trade save water resources?
    Liu X; Du H; Zhang Z; Crittenden JC; Lahr ML; Moreno-Cruz J; Guan D; Mi Z; Zuo J
    Water Res; 2019 Oct; 163():114848. PubMed ID: 31352242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interprovincial food trade and water resources conservation in China.
    Deng C; Zhang G; Li Z; Li K
    Sci Total Environ; 2020 Oct; 737():139651. PubMed ID: 32544757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Virtual water content of livestock products in China].
    Wang HR; Wang JH
    Huan Jing Ke Xue; 2006 Apr; 27(4):609-15. PubMed ID: 16767973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring solutions to alleviate the regional water stress from virtual water flows in China.
    Wang F; Cai B; Hu X; Liu Y; Zhang W
    Sci Total Environ; 2021 Nov; 796():148971. PubMed ID: 34328893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal allocation of physical water resources integrated with virtual water trade in water scarce regions: A case study for Beijing, China.
    Ye Q; Li Y; Zhuo L; Zhang W; Xiong W; Wang C; Wang P
    Water Res; 2018 Feb; 129():264-276. PubMed ID: 29156391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.