These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 24922320)

  • 1. Discovering functional modules across diverse maize transcriptomes using COB, the Co-expression Browser.
    Schaefer RJ; Briskine R; Springer NM; Myers CL
    PLoS One; 2014; 9(6):e99193. PubMed ID: 24922320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Meta Gene Regulatory Networks in Maize Highlight Functionally Relevant Regulatory Interactions.
    Zhou P; Li Z; Magnusson E; Gomez Cano F; Crisp PA; Noshay JM; Grotewold E; Hirsch CN; Briggs SP; Springer NM
    Plant Cell; 2020 May; 32(5):1377-1396. PubMed ID: 32184350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide expression quantitative trait locus analysis reveals silk-preferential gene regulatory network in maize.
    Wang X; Lu J; Han M; Wang Z; Zhang H; Liu Y; Zhou P; Fu J; Xie Y
    Physiol Plant; 2024; 176(3):e14386. PubMed ID: 38887947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MaizeNet: a co-functional network for network-assisted systems genetics in Zea mays.
    Lee T; Lee S; Yang S; Lee I
    Plant J; 2019 Aug; 99(3):571-582. PubMed ID: 31006149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-Wide Association and Gene Co-expression Network Analyses Reveal Complex Genetics of Resistance to Goss's Wilt of Maize.
    Singh A; Li G; Brohammer AB; Jarquin D; Hirsch CN; Alfano JR; Lorenz AJ
    G3 (Bethesda); 2019 Oct; 9(10):3139-3152. PubMed ID: 31362973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome-Wide Association Supplements Genome-Wide Association in
    Kremling KAG; Diepenbrock CH; Gore MA; Buckler ES; Bandillo NB
    G3 (Bethesda); 2019 Sep; 9(9):3023-3033. PubMed ID: 31337639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substantial contribution of genetic variation in the expression of transcription factors to phenotypic variation revealed by eRD-GWAS.
    Lin HY; Liu Q; Li X; Yang J; Liu S; Huang Y; Scanlon MJ; Nettleton D; Schnable PS
    Genome Biol; 2017 Oct; 18(1):192. PubMed ID: 29041960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Comprehensive Transcriptomics Analysis Reveals Long Non-Coding RNA to be Involved in the Key Metabolic Pathway in Response to Waterlogging Stress in Maize.
    Yu F; Tan Z; Fang T; Tang K; Liang K; Qiu F
    Genes (Basel); 2020 Feb; 11(3):. PubMed ID: 32121334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome analysis for identifying possible gene regulations during maize root emergence and formation at the initial growth stage.
    Hwang SG; Kim KH; Lee BM; Moon JC
    Genes Genomics; 2018 Jul; 40(7):755-766. PubMed ID: 29934814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An updated gene atlas for maize reveals organ-specific and stress-induced genes.
    Hoopes GM; Hamilton JP; Wood JC; Esteban E; Pasha A; Vaillancourt B; Provart NJ; Buell CR
    Plant J; 2019 Mar; 97(6):1154-1167. PubMed ID: 30537259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-cell RNA sequencing of developing maize ears facilitates functional analysis and trait candidate gene discovery.
    Xu X; Crow M; Rice BR; Li F; Harris B; Liu L; Demesa-Arevalo E; Lu Z; Wang L; Fox N; Wang X; Drenkow J; Luo A; Char SN; Yang B; Sylvester AW; Gingeras TR; Schmitz RJ; Ware D; Lipka AE; Gillis J; Jackson D
    Dev Cell; 2021 Feb; 56(4):557-568.e6. PubMed ID: 33400914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-expression network analysis of duplicate genes in maize (Zea mays L.) reveals no subgenome bias.
    Li L; Briskine R; Schaefer R; Schnable PS; Myers CL; Flagel LE; Springer NM; Muehlbauer GJ
    BMC Genomics; 2016 Nov; 17(1):875. PubMed ID: 27814670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A developmental transcriptional network for maize defines coexpression modules.
    Downs GS; Bi YM; Colasanti J; Wu W; Chen X; Zhu T; Rothstein SJ; Lukens LN
    Plant Physiol; 2013 Apr; 161(4):1830-43. PubMed ID: 23388120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene coexpression network alignment and conservation of gene modules between two grass species: maize and rice.
    Ficklin SP; Feltus FA
    Plant Physiol; 2011 Jul; 156(3):1244-56. PubMed ID: 21606319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distant eQTLs and Non-coding Sequences Play Critical Roles in Regulating Gene Expression and Quantitative Trait Variation in Maize.
    Liu H; Luo X; Niu L; Xiao Y; Chen L; Liu J; Wang X; Jin M; Li W; Zhang Q; Yan J
    Mol Plant; 2017 Mar; 10(3):414-426. PubMed ID: 27381443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New lncRNA annotation reveals extensive functional divergence of the transcriptome in maize.
    Han L; Mu Z; Luo Z; Pan Q; Li L
    J Integr Plant Biol; 2019 Apr; 61(4):394-405. PubMed ID: 30117291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and related model species.
    Woldesemayat AA; Modise DM; Gemeildien J; Ndimba BK; Christoffels A
    PLoS One; 2018; 13(3):e0192678. PubMed ID: 29590108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MCENet: A database for maize conditional co-expression network and network characterization collaborated with multi-dimensional omics levels.
    Tian T; You Q; Yan H; Xu W; Su Z
    J Genet Genomics; 2018 Jul; 45(7):351-360. PubMed ID: 30057343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined Large-Scale Phenotyping and Transcriptomics in Maize Reveals a Robust Growth Regulatory Network.
    Baute J; Herman D; Coppens F; De Block J; Slabbinck B; Dell'Acqua M; Pè ME; Maere S; Nelissen H; Inzé D
    Plant Physiol; 2016 Mar; 170(3):1848-67. PubMed ID: 26754667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maize network analysis revealed gene modules involved in development, nutrients utilization, metabolism, and stress response.
    Ma S; Ding Z; Li P
    BMC Plant Biol; 2017 Aug; 17(1):131. PubMed ID: 28764653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.