These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24922363)

  • 1. Structure reconstruction of TiO2-based multi-wall nanotubes: first-principles calculations.
    Bandura AV; Evarestov RA; Lukyanov SI
    Phys Chem Chem Phys; 2014 Jul; 16(28):14781-91. PubMed ID: 24922363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ab initio modeling of TiO2 nanotubes.
    Szieberth D; Ferrari AM; Noel Y; Ferrabone M
    Nanoscale; 2010 Jan; 2(1):81-9. PubMed ID: 20648368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orientation effects in morphology and electronic properties of anatase TiO(2) one-dimensional nanostructures. II. Nanotubes.
    Migas DB; Filonov AB; Borisenko VE; Skorodumova NV
    Phys Chem Chem Phys; 2014 May; 16(20):9490-8. PubMed ID: 24724154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TiS2 and ZrS2 single- and double-wall nanotubes: first-principles study.
    Bandura AV; Evarestov RA
    J Comput Chem; 2014 Feb; 35(5):395-405. PubMed ID: 24327400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled fabrication of porous double-walled TiO2 nanotubes via ultraviolet-assisted anodization.
    Ali G; Kim HJ; Kim JJ; Cho SO
    Nanoscale; 2014 Apr; 6(7):3632-7. PubMed ID: 24562049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alumina decorated TiO2 nanotubes with ordered mesoporous walls as high sensitivity NO(x) gas sensors at room temperature.
    Lü R; Zhou W; Shi K; Yang Y; Wang L; Pan K; Tian C; Ren Z; Fu H
    Nanoscale; 2013 Sep; 5(18):8569-76. PubMed ID: 23892951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab initio modeling of trititanate nanotubes.
    Szieberth D; Ferrari AM; D'Arco P; Orlando R
    Nanoscale; 2011 Mar; 3(3):1113-9. PubMed ID: 21203646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the use of symmetry in the ab initio quantum mechanical simulation of nanotubes and related materials.
    Noel Y; D'arco P; Demichelis R; Zicovich-Wilson CM; Dovesi R
    J Comput Chem; 2010 Mar; 31(4):855-62. PubMed ID: 19603502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coaxial heterogeneous structure of TiO2 nanotube arrays with CdS as a superthin coating synthesized via modified electrochemical atomic layer deposition.
    Zhu W; Liu X; Liu H; Tong D; Yang J; Peng J
    J Am Chem Soc; 2010 Sep; 132(36):12619-26. PubMed ID: 20536235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The potential of imogolite nanotubes as (co-)photocatalysts: a linear-scaling density functional theory study.
    Poli E; Elliott JD; Ratcliff LE; Andrinopoulos L; Dziedzic J; Hine ND; Mostofi AA; Skylaris CK; Haynes PD; Teobaldi G
    J Phys Condens Matter; 2016 Feb; 28(7):074003. PubMed ID: 26808452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell response of anodized nanotubes on titanium and titanium alloys.
    Minagar S; Wang J; Berndt CC; Ivanova EP; Wen C
    J Biomed Mater Res A; 2013 Sep; 101(9):2726-39. PubMed ID: 23436766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Ti-O bonds in phase transitions of TiO2.
    Nosheen S; Galasso FS; Suib SL
    Langmuir; 2009 Jul; 25(13):7623-30. PubMed ID: 19453129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Fabrication and photocatalytic activity of Pt-inserted titania nanotubes].
    Li HL; Luo WL; Tian WY; Chen T; Li C; Sun M; Zhu D; Liu RR; Zhao YL; Liu CL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jun; 29(6):1623-6. PubMed ID: 19810545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of ultrahigh crystalline TiO2 nanotubes.
    Khan MA; Jung HT; Yang OB
    J Phys Chem B; 2006 Apr; 110(13):6626-30. PubMed ID: 16570964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping the surface (hydr)oxo-groups of titanium oxide and its interface with an aqueous solution: the state of the art and a new approach.
    Panagiotou GD; Petsi T; Bourikas K; Garoufalis CS; Tsevis A; Spanos N; Kordulis C; Lycourghiotis A
    Adv Colloid Interface Sci; 2008 Oct; 142(1-2):20-42. PubMed ID: 18511015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-principles calculations of AlN nanowires and nanotubes: atomic structures, energetics, and surface states.
    Zhao M; Xia Y; Liu X; Tan Z; Huang B; Song C; Mei L
    J Phys Chem B; 2006 May; 110(17):8764-8. PubMed ID: 16640433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double-layer electrode based on TiO2 nanotubes arrays for enhancing photovoltaic properties in dye-sensitized solar cells.
    He Z; Que W; Sun P; Ren J
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):12779-83. PubMed ID: 24304127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An idealized polyhedral model and geometric structure for silicon nanotubes.
    Lee RK; Cox BJ; Hill JM
    J Phys Condens Matter; 2009 Feb; 21(7):075301. PubMed ID: 21817322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of highly ordered TiO2 nanorod/nanotube adjacent arrays for photoelectrochemical applications.
    Zhang H; Liu P; Liu X; Zhang S; Yao X; An T; Amal R; Zhao H
    Langmuir; 2010 Jul; 26(13):11226-32. PubMed ID: 20384304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrothermal growth of TiO2 nanorod arrays and in situ conversion to nanotube arrays for highly efficient quantum dot-sensitized solar cells.
    Huang H; Pan L; Lim CK; Gong H; Guo J; Tse MS; Tan OK
    Small; 2013 Sep; 9(18):3153-60. PubMed ID: 23606243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.