These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 24922405)

  • 1. Laterally assembled nanowires for ultrathin broadband solar absorbers.
    Song KD; Kempa TJ; Park HG; Kim SK
    Opt Express; 2014 May; 22 Suppl 3():A992-A1000. PubMed ID: 24922405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of nanowire optical cavities as efficient photon absorbers.
    Kim SK; Song KD; Kempa TJ; Day RW; Lieber CM; Park HG
    ACS Nano; 2014 Apr; 8(4):3707-14. PubMed ID: 24617563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of input couplers for efficient silicon thin film solar absorbers.
    Kim SK; Song KD; Park HG
    Opt Express; 2012 Nov; 20(23):A997-1004. PubMed ID: 23326848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of input couplers for efficient silicon thin film solar absorbers.
    Kim SK; Song KD; Park HG
    Opt Express; 2012 Nov; 20 Suppl 6():A997-1004. PubMed ID: 23187677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation.
    Fountaine KT; Kendall CG; Atwater HA
    Opt Express; 2014 May; 22 Suppl 3():A930-40. PubMed ID: 24922398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping.
    Gao T; Stevens E; Lee JK; Leu PW
    Opt Lett; 2014 Aug; 39(16):4647-50. PubMed ID: 25121839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design.
    Kim SK; Day RW; Cahoon JF; Kempa TJ; Song KD; Park HG; Lieber CM
    Nano Lett; 2012 Sep; 12(9):4971-6. PubMed ID: 22889329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong broadband absorption in GaAs nanocone and nanowire arrays for solar cells.
    Wang B; Stevens E; Leu PW
    Opt Express; 2014 Mar; 22 Suppl 2():A386-95. PubMed ID: 24922248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis and design of InAs nanowire array based ultra broadband perfect absorber.
    Hassan MM; Islam F; Baten MZ; Subrina S
    RSC Adv; 2021 Nov; 11(59):37595-37603. PubMed ID: 35496425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembled hollow nanosphere arrays used as low Q whispering gallery mode resonators on thin film solar cells for light trapping.
    Yin J; Zang Y; Yue C; He X; Li J; Wu Z; Fang Y
    Phys Chem Chem Phys; 2013 Oct; 15(39):16874-82. PubMed ID: 23999602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absorption of light in a single vertical nanowire and a nanowire array.
    Anttu N
    Nanotechnology; 2019 Mar; 30(10):104004. PubMed ID: 30572314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband absorption enhancement in elliptical silicon nanowire arrays for photovoltaic applications.
    Wu Y; Xia Z; Liang Z; Zhou J; Jiao H; Cao H; Qin X
    Opt Express; 2014 Aug; 22 Suppl 5():A1292-302. PubMed ID: 25322184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of silver core position on enhanced photon absorption of single nanowire α-Si solar cells.
    Shi L; Zhou Z; Huang Z
    Opt Express; 2013 Nov; 21 Suppl 6():A1007-17. PubMed ID: 24514921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of enhanced optical absorption for ultrathin silicon solar microcells with an integrated nanostructured backside reflector.
    Corcoran CJ; Kang S; Li L; Guo X; Chanda D; Nuzzo RG
    ACS Appl Mater Interfaces; 2013 May; 5(10):4239-46. PubMed ID: 23586736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geometrical optimisation of core-shell nanowire arrays for enhanced absorption in thin crystalline silicon heterojunction solar cells.
    Vismara R; Isabella O; Ingenito A; Si FT; Zeman M
    Beilstein J Nanotechnol; 2019; 10():322-331. PubMed ID: 30800571
    [No Abstract]   [Full Text] [Related]  

  • 16. Light absorption and emission in nanowire array solar cells.
    Kupec J; Stoop RL; Witzigmann B
    Opt Express; 2010 Dec; 18(26):27589-605. PubMed ID: 21197033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large Absorption Enhancement in Ultrathin Solar Cells Patterned by Metallic Nanocavity Arrays.
    Wang W; Zhang J; Che X; Qin G
    Sci Rep; 2016 Oct; 6():34219. PubMed ID: 27703176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light absorption processes and optimization of ZnO/CdTe core-shell nanowire arrays for nanostructured solar cells.
    Michallon J; Bucci D; Morand A; Zanuccoli M; Consonni V; Kaminski-Cachopo A
    Nanotechnology; 2015 Feb; 26(7):075401. PubMed ID: 25629373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study of absorption in vertically and laterally oriented InP core-shell nanowire photovoltaic devices.
    Nowzari A; Heurlin M; Jain V; Storm K; Hosseinnia A; Anttu N; Borgström MT; Pettersson H; Samuelson L
    Nano Lett; 2015 Mar; 15(3):1809-14. PubMed ID: 25671437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers.
    Butun S; Aydin K
    Opt Express; 2014 Aug; 22(16):19457-68. PubMed ID: 25321029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.