These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24922464)

  • 1. Combination of optical and electrical loss analyses for a Si-phthalocyanine dye-sensitized solar cell.
    Lin KC; Wang L; Doane T; Kovalsky A; Pejic S; Burda C
    J Phys Chem B; 2014 Dec; 118(49):14027-36. PubMed ID: 24922464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H; Umeyama T; Ito S
    Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the incorporation of dual-mode luminescent NaYF4:Yb3+/Er3+.
    Li Y; Pan K; Wang G; Jiang B; Tian C; Zhou W; Qu Y; Liu S; Feng L; Fu H
    Dalton Trans; 2013 Jun; 42(22):7971-9. PubMed ID: 23455429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular design rule of phthalocyanine dyes for highly efficient near-IR performance in dye-sensitized solar cells.
    Kimura M; Nomoto H; Suzuki H; Ikeuchi T; Matsuzaki H; Murakami TN; Furube A; Masaki N; Griffith MJ; Mori S
    Chemistry; 2013 Jun; 19(23):7496-502. PubMed ID: 23576330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlorophyll-a derivatives with various hydrocarbon ester groups for efficient dye-sensitized solar cells: static and ultrafast evaluations on electron injection and charge collection processes.
    Wang XF; Tamiaki H; Wang L; Tamai N; Kitao O; Zhou H; Sasaki S
    Langmuir; 2010 May; 26(9):6320-7. PubMed ID: 20380394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal oxide semiconductors for dye- and quantum-dot-sensitized solar cells.
    Concina I; Vomiero A
    Small; 2015 Apr; 11(15):1744-74. PubMed ID: 25523717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deposition of a thin film of TiOx from a titanium metal target as novel blocking layers at conducting glass/TiO2 interfaces in ionic liquid mesoscopic TiO2 dye-sensitized solar cells.
    Xia J; Masaki N; Jiang K; Yanagida S
    J Phys Chem B; 2006 Dec; 110(50):25222-8. PubMed ID: 17165966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesoporous titania-vertical nanorod films with interfacial engineering for high performance dye-sensitized solar cells.
    Ahmed I; Fakharuddin A; Wali Q; Bin Zainun AR; Ismail J; Jose R
    Nanotechnology; 2015 Mar; 26(10):105401. PubMed ID: 25687409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of efficient dye-sensitized solar cells by introducing an interfacial layer of long-range ordered mesoporous TiO2 thin film.
    Kim YJ; Lee YH; Lee MH; Kim HJ; Pan JH; Lim GI; Choi YS; Kim K; Park NG; Lee C; Lee WI
    Langmuir; 2008 Nov; 24(22):13225-30. PubMed ID: 18922027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitizer molecular structure-device efficiency relationship in dye sensitized solar cells.
    Clifford JN; Martínez-Ferrero E; Viterisi A; Palomares E
    Chem Soc Rev; 2011 Mar; 40(3):1635-46. PubMed ID: 21076736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial confined formation of mesoporous spherical TiO2 nanostructures with improved photoelectric conversion efficiency.
    Shao W; Gu F; Li C; Lu M
    Inorg Chem; 2010 Jun; 49(12):5453-9. PubMed ID: 20507078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications of light scattering in dye-sensitized solar cells.
    Zhang Q; Myers D; Lan J; Jenekhe SA; Cao G
    Phys Chem Chem Phys; 2012 Nov; 14(43):14982-98. PubMed ID: 23042288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photocurrent enhanced by singlet fission in a dye-sensitized solar cell.
    Schrauben JN; Zhao Y; Mercado C; Dron PI; Ryerson JL; Michl J; Zhu K; Johnson JC
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2286-93. PubMed ID: 25607825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microsphere assembly of TiO2 mesoporous nanosheets with highly exposed (101) facets and application in a light-trapping quasi-solid-state dye-sensitized solar cell.
    Tao X; Ruan P; Zhang X; Sun H; Zhou X
    Nanoscale; 2015 Feb; 7(8):3539-47. PubMed ID: 25631573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic and optical properties of dye-sensitized TiO₂ interfaces.
    Pastore M; Selloni A; Fantacci S; De Angelis F
    Top Curr Chem; 2014; 347():1-45. PubMed ID: 24488437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge collection and pore filling in solid-state dye-sensitized solar cells.
    Snaith HJ; Humphry-Baker R; Chen P; Cesar I; Zakeeruddin SM; Grätzel M
    Nanotechnology; 2008 Oct; 19(42):424003. PubMed ID: 21832663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent developments in solid-state dye-sensitized solar cells.
    Yum JH; Chen P; Grätzel M; Nazeeruddin MK
    ChemSusChem; 2008; 1(8-9):699-707. PubMed ID: 18686289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functions of self-assembled ultrafine TiO₂ nanocrystals for high efficient dye-sensitized solar cells.
    Xie F; Cherng SJ; Lu S; Chang YH; Sha WE; Feng SP; Chen CM; Choy WC
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5367-73. PubMed ID: 24665885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer.
    Kamat PV
    Acc Chem Res; 2012 Nov; 45(11):1906-15. PubMed ID: 22493938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical investigation of new thiazolothiazole-based D-π-A organic dyes for efficient dye-sensitized solar cell.
    Fitri A; Benjelloun AT; Benzakour M; Mcharfi M; Hamidi M; Bouachrine M
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():646-54. PubMed ID: 24513712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.