BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 24922507)

  • 21. Filling gaps in translesion DNA synthesis in human cells.
    Quinet A; Lerner LK; Martins DJ; Menck CFM
    Mutat Res Genet Toxicol Environ Mutagen; 2018 Dec; 836(Pt B):127-142. PubMed ID: 30442338
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temporally distinct translesion synthesis pathways for ultraviolet light-induced photoproducts in the mammalian genome.
    Temviriyanukul P; van Hees-Stuivenberg S; Delbos F; Jacobs H; de Wind N; Jansen JG
    DNA Repair (Amst); 2012 Jun; 11(6):550-8. PubMed ID: 22521143
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bypass of DNA interstrand crosslinks by a Rev1-DNA polymerase ζ complex.
    Bezalel-Buch R; Cheun YK; Roy U; Schärer OD; Burgers PM
    Nucleic Acids Res; 2020 Sep; 48(15):8461-8473. PubMed ID: 32633759
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CDH1 binds MAD2L2 in a Rev1-like pattern.
    Pernicone N; Grinshpon S; Listovsky T
    Biochem Biophys Res Commun; 2020 Oct; 531(4):566-572. PubMed ID: 32811646
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ubiquitin-dependent regulation of translesion polymerases.
    Chun AC; Jin DY
    Biochem Soc Trans; 2010 Feb; 38(Pt 1):110-5. PubMed ID: 20074045
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The C-terminal domain of human Rev1 contains independent binding sites for DNA polymerase η and Rev7 subunit of polymerase ζ.
    Pustovalova Y; Bezsonova I; Korzhnev DM
    FEBS Lett; 2012 Sep; 586(19):3051-6. PubMed ID: 22828282
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Complex formation with Rev1 enhances the proficiency of Saccharomyces cerevisiae DNA polymerase zeta for mismatch extension and for extension opposite from DNA lesions.
    Acharya N; Johnson RE; Prakash S; Prakash L
    Mol Cell Biol; 2006 Dec; 26(24):9555-63. PubMed ID: 17030609
    [TBL] [Abstract][Full Text] [Related]  

  • 28. REV7 is required for anaphase-promoting complex-dependent ubiquitination and degradation of translesion DNA polymerase REV1.
    Chun AC; Kok KH; Jin DY
    Cell Cycle; 2013 Jan; 12(2):365-78. PubMed ID: 23287467
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multisite SUMOylation restrains DNA polymerase η interactions with DNA damage sites.
    Guérillon C; Smedegaard S; Hendriks IA; Nielsen ML; Mailand N
    J Biol Chem; 2020 Jun; 295(25):8350-8362. PubMed ID: 32350109
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Backbone and ILV side-chain methyl NMR resonance assignments of human Rev7/Rev3-RBM1 and Rev7/Rev3-RBM2 complexes.
    Arianna GA; Geddes-Buehre DH; Korzhnev DM
    Biomol NMR Assign; 2023 Jun; 17(1):107-114. PubMed ID: 37129702
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DNA-damage tolerance mediated by PCNA*Ub fusions in human cells is dependent on Rev1 but not Polη.
    Qin Z; Lu M; Xu X; Hanna M; Shiomi N; Xiao W
    Nucleic Acids Res; 2013 Aug; 41(15):7356-69. PubMed ID: 23761444
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural basis for novel interactions between human translesion synthesis polymerases and proliferating cell nuclear antigen.
    Hishiki A; Hashimoto H; Hanafusa T; Kamei K; Ohashi E; Shimizu T; Ohmori H; Sato M
    J Biol Chem; 2009 Apr; 284(16):10552-60. PubMed ID: 19208623
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The non-canonical protein binding site at the monomer-monomer interface of yeast proliferating cell nuclear antigen (PCNA) regulates the Rev1-PCNA interaction and Polζ/Rev1-dependent translesion DNA synthesis.
    Sharma NM; Kochenova OV; Shcherbakova PV
    J Biol Chem; 2011 Sep; 286(38):33557-66. PubMed ID: 21799021
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of CPD ultraviolet lesion bypass in chicken DT40 cells: polymerase η and PCNA ubiquitylation play identical roles.
    Varga A; Marcus AP; Himoto M; Iwai S; Szüts D
    PLoS One; 2012; 7(12):e52472. PubMed ID: 23272247
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage.
    Kannouche PL; Wing J; Lehmann AR
    Mol Cell; 2004 May; 14(4):491-500. PubMed ID: 15149598
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contiguous 2,2,4-triamino-5(2H)-oxazolone obstructs DNA synthesis by DNA polymerases α, β, η, ι, κ, REV1 and Klenow Fragment exo-, but not by DNA polymerase ζ.
    Suzuki M; Kino K; Kawada T; Oyoshi T; Morikawa M; Kobayashi T; Miyazawa H
    J Biochem; 2016 Mar; 159(3):323-9. PubMed ID: 26491064
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystal structure of human REV7 in complex with a human REV3 fragment and structural implication of the interaction between DNA polymerase zeta and REV1.
    Hara K; Hashimoto H; Murakumo Y; Kobayashi S; Kogame T; Unzai S; Akashi S; Takeda S; Shimizu T; Sato M
    J Biol Chem; 2010 Apr; 285(16):12299-307. PubMed ID: 20164194
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolution of Rev7 interactions in eukaryotic TLS DNA polymerase Polζ.
    McPherson KS; Rizzo AA; Erlandsen H; Chatterjee N; Walker GC; Korzhnev DM
    J Biol Chem; 2023 Feb; 299(2):102859. PubMed ID: 36592930
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PCNA ubiquitination and REV1 define temporally distinct mechanisms for controlling translesion synthesis in the avian cell line DT40.
    Edmunds CE; Simpson LJ; Sale JE
    Mol Cell; 2008 May; 30(4):519-29. PubMed ID: 18498753
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analyses of ultraviolet-induced focus formation of hREV1 protein.
    Murakumo Y; Mizutani S; Yamaguchi M; Ichihara M; Takahashi M
    Genes Cells; 2006 Mar; 11(3):193-205. PubMed ID: 16483309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.