BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

452 related articles for article (PubMed ID: 24922508)

  • 21. Dynamic Aha1 co-chaperone binding to human Hsp90.
    Oroz J; Blair LJ; Zweckstetter M
    Protein Sci; 2019 Sep; 28(9):1545-1551. PubMed ID: 31299134
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dissecting Structure-Encoded Determinants of Allosteric Cross-Talk between Post-Translational Modification Sites in the Hsp90 Chaperones.
    Stetz G; Tse A; Verkhivker GM
    Sci Rep; 2018 May; 8(1):6899. PubMed ID: 29720613
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biophysical simulations and structure-based modeling of residue interaction networks in the tumor suppressor proteins reveal functional role of cancer mutation hotspots in molecular communication.
    Verkhivker GM
    Biochim Biophys Acta Gen Subj; 2019 Jan; 1863(1):210-225. PubMed ID: 30339916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Co-chaperone regulation of conformational switching in the Hsp90 ATPase cycle.
    Siligardi G; Hu B; Panaretou B; Piper PW; Pearl LH; Prodromou C
    J Biol Chem; 2004 Dec; 279(50):51989-98. PubMed ID: 15466438
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hsp90 structure and function studied by NMR spectroscopy.
    Didenko T; Duarte AM; Karagöz GE; Rüdiger SG
    Biochim Biophys Acta; 2012 Mar; 1823(3):636-47. PubMed ID: 22155720
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probing Allosteric Inhibition Mechanisms of the Hsp70 Chaperone Proteins Using Molecular Dynamics Simulations and Analysis of the Residue Interaction Networks.
    Stetz G; Verkhivker GM
    J Chem Inf Model; 2016 Aug; 56(8):1490-517. PubMed ID: 27447295
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The 'active life' of Hsp90 complexes.
    Prodromou C
    Biochim Biophys Acta; 2012 Mar; 1823(3):614-23. PubMed ID: 21840346
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones.
    Prodromou C; Siligardi G; O'Brien R; Woolfson DN; Regan L; Panaretou B; Ladbury JE; Piper PW; Pearl LH
    EMBO J; 1999 Feb; 18(3):754-62. PubMed ID: 9927435
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex.
    Ali MM; Roe SM; Vaughan CK; Meyer P; Panaretou B; Piper PW; Prodromou C; Pearl LH
    Nature; 2006 Apr; 440(7087):1013-7. PubMed ID: 16625188
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploring Molecular Mechanisms of Paradoxical Activation in the BRAF Kinase Dimers: Atomistic Simulations of Conformational Dynamics and Modeling of Allosteric Communication Networks and Signaling Pathways.
    Tse A; Verkhivker GM
    PLoS One; 2016; 11(11):e0166583. PubMed ID: 27861609
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Co-chaperone Sba1 connects the ATPase reaction of Hsp90 to the progression of the chaperone cycle.
    Richter K; Walter S; Buchner J
    J Mol Biol; 2004 Oct; 342(5):1403-13. PubMed ID: 15364569
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The conserved NxNNWHW motif in Aha-type co-chaperones modulates the kinetics of Hsp90 ATPase stimulation.
    Mercier R; Wolmarans A; Schubert J; Neuweiler H; Johnson JL; LaPointe P
    Nat Commun; 2019 Mar; 10(1):1273. PubMed ID: 30894538
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stimulation of the weak ATPase activity of human hsp90 by a client protein.
    McLaughlin SH; Smith HW; Jackson SE
    J Mol Biol; 2002 Jan; 315(4):787-98. PubMed ID: 11812147
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Allosteric Modulation of Human Hsp90α Conformational Dynamics.
    Penkler DL; Atilgan C; Tastan Bishop Ö
    J Chem Inf Model; 2018 Feb; 58(2):383-404. PubMed ID: 29378140
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular Dynamics Simulations Reveal the Mechanisms of Allosteric Activation of Hsp90 by Designed Ligands.
    Vettoretti G; Moroni E; Sattin S; Tao J; Agard DA; Bernardi A; Colombo G
    Sci Rep; 2016 Apr; 6():23830. PubMed ID: 27032695
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural Communication between the
    Grindle MP; Carter B; Alao JP; Connors K; Tehver R; Kravats AN
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33672263
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling signal propagation mechanisms and ligand-based conformational dynamics of the Hsp90 molecular chaperone full-length dimer.
    Morra G; Verkhivker G; Colombo G
    PLoS Comput Biol; 2009 Mar; 5(3):e1000323. PubMed ID: 19300478
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activation of Hsp90 Enzymatic Activity and Conformational Dynamics through Rationally Designed Allosteric Ligands.
    Sattin S; Tao J; Vettoretti G; Moroni E; Pennati M; Lopergolo A; Morelli L; Bugatti A; Zuehlke A; Moses M; Prince T; Kijima T; Beebe K; Rusnati M; Neckers L; Zaffaroni N; Agard DA; Bernardi A; Colombo G
    Chemistry; 2015 Sep; 21(39):13598-608. PubMed ID: 26286886
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ligand Binding, Unbinding, and Allosteric Effects: Deciphering Small-Molecule Modulation of HSP90.
    D'Annessa I; Raniolo S; Limongelli V; Di Marino D; Colombo G
    J Chem Theory Comput; 2019 Nov; 15(11):6368-6381. PubMed ID: 31538783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The conserved arginine 380 of Hsp90 is not a catalytic residue, but stabilizes the closed conformation required for ATP hydrolysis.
    Cunningham CN; Southworth DR; Krukenberg KA; Agard DA
    Protein Sci; 2012 Aug; 21(8):1162-71. PubMed ID: 22653663
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.