BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 24923247)

  • 1. Stopping power of liquid water for carbon ions in the energy range between 1 MeV and 6 MeV.
    Rahm JM; Baek WY; Rabus H; Hofsäss H
    Phys Med Biol; 2014 Jul; 59(14):3683-95. PubMed ID: 24923247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental study of nuclear fragmentation of 200 and 400 MeV/u (12)C ions in water for applications in particle therapy.
    Haettner E; Iwase H; Krämer M; Kraft G; Schardt D
    Phys Med Biol; 2013 Dec; 58(23):8265-79. PubMed ID: 24216465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stopping power of water for carbon ions with energies in the Bragg peak region.
    Baek WY; Braunroth T; de La Fuente Rosales L; Rahm JM; Rabus H
    Phys Rev E; 2020 Dec; 102(6-1):062418. PubMed ID: 33466039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion from dose-to-graphite to dose-to-water in an 80 MeV/A carbon ion beam.
    Rossomme S; Palmans H; Shipley D; Thomas R; Lee N; Romano F; Cirrone P; Cuttone G; Bertrand D; Vynckier S
    Phys Med Biol; 2013 Aug; 58(16):5363-80. PubMed ID: 23877166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical model for ion stopping power and range in the therapeutic energy interval for beams of hydrogen and heavier ions.
    Donahue W; Newhauser WD; Ziegler JF
    Phys Med Biol; 2016 Sep; 61(17):6570-84. PubMed ID: 27530803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculation of stopping power ratios for carbon ion dosimetry.
    Geithner O; Andreo P; Sobolevsky N; Hartmann G; Jäkel O
    Phys Med Biol; 2006 May; 51(9):2279-92. PubMed ID: 16625042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-section scaling for track structure simulations of low-energy ions in liquid water.
    Schmitt E; Friedland W; Kundrát P; Dingfelder M; Ottolenghi A
    Radiat Prot Dosimetry; 2015 Sep; 166(1-4):15-8. PubMed ID: 25969528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic stopping power of liquid water for protons down to the Bragg peak.
    Emfietzoglou D; Pathak A; Nikjoo H
    Radiat Prot Dosimetry; 2007; 126(1-4):97-100. PubMed ID: 17504748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the delta ray production threshold on water-to-air stopping power ratio calculations for carbon ion beam radiotherapy.
    Sánchez-Parcerisa D; Gemmel A; Jäkel O; Rietzel E; Parodi K
    Phys Med Biol; 2013 Jan; 58(1):145-58. PubMed ID: 23221148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stopping power for particle therapy: the generic library libdEdx and clinically relevant stopping-power ratios for light ions.
    Lühr A; Toftegaard J; Kantemiris I; Hansen DC; Bassler N
    Int J Radiat Biol; 2012 Jan; 88(1-2):209-12. PubMed ID: 21770701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of Gaussian-type functions for flux-based dose calculations in carbon ion therapy.
    Usta M; Aydın G
    Radiat Environ Biophys; 2020 Aug; 59(3):511-522. PubMed ID: 32561981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of the stopping-power-ratio to Hounsfield-value calibration curve in proton and heavy ion therapy.
    Witt M; Weber U; Kellner D; Engenhart-Cabillic R; Zink K
    Z Med Phys; 2015 Sep; 25(3):251-63. PubMed ID: 25497583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stopping cross-sections of liquid water and water vapour for alpha particles within the energy region 0.3 to 5.5 MeV.
    Thwaites DI
    Phys Med Biol; 1981 Jan; 26(1):71-80. PubMed ID: 7243872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dielectric response study of the electronic stopping power of liquid water for energetic protons and a new I-value for water.
    Emfietzoglou D; Garcia-Molina R; Kyriakou I; Abril I; Nikjoo H
    Phys Med Biol; 2009 Jun; 54(11):3451-72. PubMed ID: 19436107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative estimation of track segment yields of water radiolysis species under heavy ions around Bragg peak energies using Geant4-DNA.
    Baba K; Kusumoto T; Okada S; Ogawara R; Kodaira S; Raffy Q; Barillon R; Ludwig N; Galindo C; Peaupardin P; Ishikawa M
    Sci Rep; 2021 Jan; 11(1):1524. PubMed ID: 33452450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microdosimetry measurements characterizing the radiation fields of 300 MeV/u 12C and 185 MeV/u 7Li pencil beams stopping in water.
    Martino G; Durante M; Schardt D
    Phys Med Biol; 2010 Jun; 55(12):3441-9. PubMed ID: 20508316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dosimetry and measured differential W values of air for heavy ions.
    Kanai T; Kohno T; Minohara S; Sudou M; Takada E; Soga F; Kawachi K; Fukumura A
    Radiat Res; 1993 Sep; 135(3):293-301. PubMed ID: 8378523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water fragmentation and energy loss by carbon ions at the distal region of the Bragg peak.
    Montenegro EC; Shah MB; Luna H; Scully SW; de Barros AL; Wyer JA; Lecointre J
    Phys Rev Lett; 2007 Nov; 99(21):213201. PubMed ID: 18233216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fragmentation of 670A MeV neon-20 as a function of depth in water. III. Analytical multigeneration transport theory.
    Shavers MR; Frankel K; Miller J; Schimmerling W; Townsend LW; Wilson JW
    Radiat Res; 1993 Oct; 136(1):1-14. PubMed ID: 8210324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the secondary neutron field produced during treatment of an anthropomorphic phantom with x-rays, protons and carbon ions.
    Tessa CL; Berger T; Kaderka R; Schardt D; Burmeister S; Labrenz J; Reitz G; Durante M
    Phys Med Biol; 2014 Apr; 59(8):2111-25. PubMed ID: 24694920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.