These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 24923290)

  • 1. All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries.
    Kim H; Park KY; Hong J; Kang K
    Sci Rep; 2014 Jun; 4():5278. PubMed ID: 24923290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Performance Lithium-Ion Hybrid Capacitors Employing Fe
    Zhang S; Li C; Zhang X; Sun X; Wang K; Ma Y
    ACS Appl Mater Interfaces; 2017 May; 9(20):17136-17144. PubMed ID: 28474525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-High Energy Density Hybrid Supercapacitors Using MnO
    Rani JR; Thangavel R; Kim M; Lee YS; Jang JH
    Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33081310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High performance Li-ion capacitor fabricated with dual graphene-based materials.
    Sui D; Wu M; Liu Y; Yang Y; Zhang H; Ma Y; Zhang L; Chen Y
    Nanotechnology; 2021 Jan; 32(1):015403. PubMed ID: 32947263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene surface-enabled lithium ion-exchanging cells: next-generation high-power energy storage devices.
    Jang BZ; Liu C; Neff D; Yu Z; Wang MC; Xiong W; Zhamu A
    Nano Lett; 2011 Sep; 11(9):3785-91. PubMed ID: 21823618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene: a promising 2D material for electrochemical energy storage.
    Dong Y; Wu ZS; Ren W; Cheng HM; Bao X
    Sci Bull (Beijing); 2017 May; 62(10):724-740. PubMed ID: 36659445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A New Free-Standing Aqueous Zinc-Ion Capacitor Based on MnO
    Wang S; Wang Q; Zeng W; Wang M; Ruan L; Ma Y
    Nanomicro Lett; 2019 Aug; 11(1):70. PubMed ID: 34138022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesh-Like Carbon Nanosheets with High-Level Nitrogen Doping for High-Energy Dual-Carbon Lithium-Ion Capacitors.
    Li Z; Cao L; Chen W; Huang Z; Liu H
    Small; 2019 Apr; 15(15):e1805173. PubMed ID: 30861630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high energy and power Li-ion capacitor based on a TiO2 nanobelt array anode and a graphene hydrogel cathode.
    Wang H; Guan C; Wang X; Fan HJ
    Small; 2015 Mar; 11(12):1470-7. PubMed ID: 25366170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface chemistry and structure manipulation of graphene-related materials to address the challenges of electrochemical energy storage.
    Sun Y; Sun J; Sanchez JS; Xia Z; Xiao L; Chen R; Palermo V
    Chem Commun (Camb); 2023 Feb; 59(18):2571-2583. PubMed ID: 36749576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hard@Soft Integrated Morning Glory Like Porous Carbon as a Cathode for a High-Energy Lithium Ion Capacitor.
    Yan D; Li SH; Guo LP; Dong XL; Chen ZY; Li WC
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43946-43952. PubMed ID: 30475571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode.
    Hassoun J; Bonaccorso F; Agostini M; Angelucci M; Betti MG; Cingolani R; Gemmi M; Mariani C; Panero S; Pellegrini V; Scrosati B
    Nano Lett; 2014 Aug; 14(8):4901-6. PubMed ID: 25026051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uniform Incorporation of Flocculent Molybdenum Disulfide Nanostructure into Three-Dimensional Porous Graphene as an Anode for High-Performance Lithium Ion Batteries and Hybrid Supercapacitors.
    Zhang F; Tang Y; Liu H; Ji H; Jiang C; Zhang J; Zhang X; Lee CS
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4691-9. PubMed ID: 26808826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode.
    Sun F; Gao J; Zhu Y; Pi X; Wang L; Liu X; Qin Y
    Sci Rep; 2017 Feb; 7():40990. PubMed ID: 28155853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile Synthesis of Graphene with Fast Ion/Electron Channels for High-Performance Symmetric Lithium-Ion Capacitors.
    Xiao Y; Liu J; He D; Chen S; Peng W; Hu X; Liu T; Zhu Z; Bai Y
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38266-38277. PubMed ID: 34374273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene Oxide Wrapped CuV
    Liu Y; Li Q; Ma K; Yang G; Wang C
    ACS Nano; 2019 Oct; 13(10):12081-12089. PubMed ID: 31553172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Lithium-Ion Battery Cathodes and Anodes Based on Branched Aramid Nanofibers.
    Flouda P; Oka S; Loufakis D; Lagoudas DC; Lutkenhaus JL
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34807-34817. PubMed ID: 34256563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon-Shielded Selenium-Rich Trimetallic Selenides as Advanced Electrode Material for Durable Li-Ion Batteries and Supercapacitors.
    Kakarla AK; Bandi H; Shanthappa R; Yu JS
    Small Methods; 2023 Mar; 7(3):e2201315. PubMed ID: 36642860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Which is the most effective pristine graphene electrode for energy storage devices: aerogel or xerogel?
    Jung SM; Kim DW; Jung HY
    Nanoscale; 2019 Oct; 11(38):17563-17570. PubMed ID: 31549701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.