BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 24923324)

  • 1. Pangenome evidence for extensive interdomain horizontal transfer affecting lineage core and shell genes in uncultured planktonic thaumarchaeota and euryarchaeota.
    Deschamps P; Zivanovic Y; Moreira D; Rodriguez-Valera F; López-García P
    Genome Biol Evol; 2014 Jun; 6(7):1549-63. PubMed ID: 24923324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete-fosmid and fosmid-end sequences reveal frequent horizontal gene transfers in marine uncultured planktonic archaea.
    Brochier-Armanet C; Deschamps P; López-García P; Zivanovic Y; Rodríguez-Valera F; Moreira D
    ISME J; 2011 Aug; 5(8):1291-302. PubMed ID: 21346789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncultured Archaea in a hydrothermal microbial assemblage: phylogenetic diversity and characterization of a genome fragment from a euryarchaeote.
    Moussard H; Moreira D; Cambon-Bonavita MA; López-García P; Jeanthon C
    FEMS Microbiol Ecol; 2006 Sep; 57(3):452-69. PubMed ID: 16907759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hindsight in the relative abundance, metabolic potential and genome dynamics of uncultivated marine archaea from comparative metagenomic analyses of bathypelagic plankton of different oceanic regions.
    Martin-Cuadrado AB; Rodriguez-Valera F; Moreira D; Alba JC; Ivars-Martínez E; Henn MR; Talla E; López-García P
    ISME J; 2008 Aug; 2(8):865-86. PubMed ID: 18463691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial gene import and mesophilic adaptation in archaea.
    López-García P; Zivanovic Y; Deschamps P; Moreira D
    Nat Rev Microbiol; 2015 Jul; 13(7):447-56. PubMed ID: 26075362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota.
    Spang A; Hatzenpichler R; Brochier-Armanet C; Rattei T; Tischler P; Spieck E; Streit W; Stahl DA; Wagner M; Schleper C
    Trends Microbiol; 2010 Aug; 18(8):331-40. PubMed ID: 20598889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic ecology of Marine Group II, the most common marine planktonic Archaea across the surface ocean.
    Pereira O; Hochart C; Auguet JC; Debroas D; Galand PE
    Microbiologyopen; 2019 Sep; 8(9):e00852. PubMed ID: 31264806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modularized evolution in archaeal methanogens phylogenetic forest.
    Li J; Wong CF; Wong MT; Huang H; Leung FC
    Genome Biol Evol; 2014 Dec; 6(12):3344-59. PubMed ID: 25502908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.).
    Rinke C; Rubino F; Messer LF; Youssef N; Parks DH; Chuvochina M; Brown M; Jeffries T; Tyson GW; Seymour JR; Hugenholtz P
    ISME J; 2019 Mar; 13(3):663-675. PubMed ID: 30323263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Horizontal gene transfer of a chloroplast DnaJ-Fer protein to Thaumarchaeota and the evolutionary history of the DnaK chaperone system in Archaea.
    Petitjean C; Moreira D; López-García P; Brochier-Armanet C
    BMC Evol Biol; 2012 Nov; 12():226. PubMed ID: 23181628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative genomics of the Archaea (Euryarchaeota): evolution of conserved protein families, the stable core, and the variable shell.
    Makarova KS; Aravind L; Galperin MY; Grishin NV; Tatusov RL; Wolf YI; Koonin EV
    Genome Res; 1999 Jul; 9(7):608-28. PubMed ID: 10413400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Horizontal gene transfer and genome evolution in Methanosarcina.
    Garushyants SK; Kazanov MD; Gelfand MS
    BMC Evol Biol; 2015 Jun; 15():102. PubMed ID: 26044078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low genome content diversity of marine planktonic Thaumarchaeota.
    Luo H; Sun Y; Hollibaugh JT; Moran MA
    Environ Microbiol Rep; 2016 Aug; 8(4):501-7. PubMed ID: 27120311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome trees constructed using five different approaches suggest new major bacterial clades.
    Wolf YI; Rogozin IB; Grishin NV; Tatusov RL; Koonin EV
    BMC Evol Biol; 2001 Oct; 1():8. PubMed ID: 11734060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea.
    Makarova KS; Sorokin AV; Novichkov PS; Wolf YI; Koonin EV
    Biol Direct; 2007 Nov; 2():33. PubMed ID: 18042280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A novel archaeal phylum: thaumarchaeota--a review].
    Zhang L; He J
    Wei Sheng Wu Xue Bao; 2012 Apr; 52(4):411-21. PubMed ID: 22799205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rooting the domain archaea by phylogenomic analysis supports the foundation of the new kingdom Proteoarchaeota.
    Petitjean C; Deschamps P; López-García P; Moreira D
    Genome Biol Evol; 2014 Dec; 7(1):191-204. PubMed ID: 25527841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic bacterial genes and the construction of high-level composite lineages of life.
    Méheust R; Lopez P; Bapteste E
    Trends Ecol Evol; 2015 Mar; 30(3):127-9. PubMed ID: 25601290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogenetic diversity of planktonic archaea in the estuarine region of East China Sea.
    Zeng Y; Li H; Jiao N
    Microbiol Res; 2007; 162(1):26-36. PubMed ID: 16914298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ancient horizontal gene transfer and the last common ancestors.
    Fournier GP; Andam CP; Gogarten JP
    BMC Evol Biol; 2015 Apr; 15():70. PubMed ID: 25897759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.