These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 24923358)
1. Propulsion on a superhydrophobic ratchet. Dupeux G; Bourrianne P; Magdelaine Q; Clanet C; Quéré D Sci Rep; 2014 Jun; 4():5280. PubMed ID: 24923358 [TBL] [Abstract][Full Text] [Related]
2. Effect of Different Fluids on Rectified Motion of Leidenfrost Droplets on Micro/Sub-Micron Ratchets. Ok JT; Choi J; Brown E; Park S Microelectron Eng; 2016 Jun; 158():130-134. PubMed ID: 27721527 [TBL] [Abstract][Full Text] [Related]
4. Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces. Li Q; Kang QJ; Francois MM; Hu AJ Soft Matter; 2016 Jan; 12(1):302-12. PubMed ID: 26467921 [TBL] [Abstract][Full Text] [Related]
5. Self-propulsion of inverse Leidenfrost drops on a cryogenic bath. Gauthier A; Diddens C; Proville R; Lohse D; van der Meer D Proc Natl Acad Sci U S A; 2019 Jan; 116(4):1174-1179. PubMed ID: 30617076 [TBL] [Abstract][Full Text] [Related]
6. One-step process for dual-scale ratchets with enhanced mobility of Leidenfrost droplets. Liu C; Sun K; Lu C; Su J; Han L; Wang Z; Liu Y J Colloid Interface Sci; 2020 Jun; 569():229-234. PubMed ID: 32113020 [TBL] [Abstract][Full Text] [Related]
9. Propulsion mechanisms for Leidenfrost solids on ratchets. Baier T; Dupeux G; Herbert S; Hardt S; Quéré D Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):021001. PubMed ID: 23496452 [TBL] [Abstract][Full Text] [Related]
10. Self-Rotation-Induced Propulsion of a Leidenfrost Drop on a Ratchet. Mrinal M; Wang X; Luo C Langmuir; 2017 Jun; 33(25):6307-6313. PubMed ID: 28582621 [TBL] [Abstract][Full Text] [Related]
11. Macroscopically flat and smooth superhydrophobic surfaces: heating induced wetting transitions up to the Leidenfrost temperature. Liu G; Craig VS Faraday Discuss; 2010; 146():141-51; discussion 195-215, 395-403. PubMed ID: 21043419 [TBL] [Abstract][Full Text] [Related]
12. Self-Propelled Hovercraft Based on Cold Leidenfrost Phenomenon. Shi M; Ji X; Feng S; Yang Q; Lu TJ; Xu F Sci Rep; 2016 Jun; 6():28574. PubMed ID: 27338595 [TBL] [Abstract][Full Text] [Related]
13. How ambient conditions affect the Leidenfrost temperature. van Limbeek MAJ; Ramírez-Soto O; Prosperetti A; Lohse D Soft Matter; 2021 Mar; 17(11):3207-3215. PubMed ID: 33623939 [TBL] [Abstract][Full Text] [Related]
15. Design of Continuous Transport of the Droplet by the Contact-Boiling Regime. Wang S; Zhao X; Wu X; Zhang Q; Teng Y; Ahuja R; Zhang Y Langmuir; 2021 Jan; 37(1):553-560. PubMed ID: 33393313 [TBL] [Abstract][Full Text] [Related]
16. Directional Droplet Propulsion on Gradient Boron Nitride Nanosheet Grid Surface Lubricated with a Vapor Film below the Leidenfrost Temperature. Wang Y; Wang R; Zhou Y; Huang Z; Wang J; Jiang L ACS Nano; 2018 Dec; 12(12):11995-12003. PubMed ID: 30457835 [TBL] [Abstract][Full Text] [Related]
17. Enhanced droplet control by transition boiling. Grounds A; Still R; Takashina K Sci Rep; 2012; 2():720. PubMed ID: 23056912 [TBL] [Abstract][Full Text] [Related]
18. Self-propulsion of Leidenfrost Drops between Non-Parallel Structures. Luo C; Mrinal M; Wang X Sci Rep; 2017 Sep; 7(1):12018. PubMed ID: 28931942 [TBL] [Abstract][Full Text] [Related]
19. Self-excitation of Leidenfrost drops and consequences on their stability. Bouillant A; Cohen C; Clanet C; Quéré D Proc Natl Acad Sci U S A; 2021 Jun; 118(26):. PubMed ID: 34155101 [TBL] [Abstract][Full Text] [Related]
20. Inverse Leidenfrost Effect: Levitating Drops on Liquid Nitrogen. Adda-Bedia M; Kumar S; Lechenault F; Moulinet S; Schillaci M; Vella D Langmuir; 2016 May; 32(17):4179-88. PubMed ID: 27054550 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]