BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 24923681)

  • 1. Coordinated DNA dynamics during the human telomerase catalytic cycle.
    Parks JW; Stone MD
    Nat Commun; 2014 Jun; 5():4146. PubMed ID: 24923681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct observation of nucleic acid binding dynamics by the telomerase essential N-terminal domain.
    Shastry S; Steinberg-Neifach O; Lue N; Stone MD
    Nucleic Acids Res; 2018 Apr; 46(6):3088-3102. PubMed ID: 29474579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional organization of repeat addition processivity and DNA synthesis determinants in the human telomerase multimer.
    Moriarty TJ; Marie-Egyptienne DT; Autexier C
    Mol Cell Biol; 2004 May; 24(9):3720-33. PubMed ID: 15082768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human telomerase domain interactions capture DNA for TEN domain-dependent processive elongation.
    Robart AR; Collins K
    Mol Cell; 2011 May; 42(3):308-18. PubMed ID: 21514196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A modified model for translocation events of processive nucleotide and repeat additions by the recombinant telomerase.
    Xie P
    Biophys Chem; 2010 Dec; 153(1):83-96. PubMed ID: 21055868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Telomere DNA G-quadruplex folding within actively extending human telomerase.
    Jansson LI; Hentschel J; Parks JW; Chang TR; Lu C; Baral R; Bagshaw CR; Stone MD
    Proc Natl Acad Sci U S A; 2019 May; 116(19):9350-9359. PubMed ID: 31019071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yeast telomerase is capable of limited repeat addition processivity.
    Bosoy D; Lue NF
    Nucleic Acids Res; 2004; 32(1):93-101. PubMed ID: 14704347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mutation in the catalytic subunit of yeast telomerase alters primer-template alignment while promoting processivity and protein-DNA binding.
    Bairley RC; Guillaume G; Vega LR; Friedman KL
    J Cell Sci; 2011 Dec; 124(Pt 24):4241-52. PubMed ID: 22193961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexibility of telomerase in binding the RNA template and DNA telomeric repeat.
    Choi WS; Weng PJ; Yang W
    Proc Natl Acad Sci U S A; 2022 Jan; 119(1):. PubMed ID: 34969861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human telomerase catalyzes nucleolytic primer cleavage.
    Huard S; Autexier C
    Nucleic Acids Res; 2004; 32(7):2171-80. PubMed ID: 15096579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel motif in telomerase reverse transcriptase regulates telomere repeat addition rate and processivity.
    Xie M; Podlevsky JD; Qi X; Bley CJ; Chen JJ
    Nucleic Acids Res; 2010 Apr; 38(6):1982-96. PubMed ID: 20044353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human telomerase model shows the role of the TEN domain in advancing the double helix for the next polymerization step.
    Steczkiewicz K; Zimmermann MT; Kurcinski M; Lewis BA; Dobbs D; Kloczkowski A; Jernigan RL; Kolinski A; Ginalski K
    Proc Natl Acad Sci U S A; 2011 Jun; 108(23):9443-8. PubMed ID: 21606328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two inactive fragments of the integral RNA cooperate to assemble active telomerase with the human protein catalytic subunit (hTERT) in vitro.
    Tesmer VM; Ford LP; Holt SE; Frank BC; Yi X; Aisner DL; Ouellette M; Shay JW; Wright WE
    Mol Cell Biol; 1999 Sep; 19(9):6207-16. PubMed ID: 10454567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Molecule Imaging of Telomerase RNA Reveals a Recruitment-Retention Model for Telomere Elongation.
    Laprade H; Querido E; Smith MJ; Guérit D; Crimmins H; Conomos D; Pourret E; Chartrand P; Sfeir A
    Mol Cell; 2020 Jul; 79(1):115-126.e6. PubMed ID: 32497497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of hTERT and hTR in cis reconstitutes and active human telomerase ribonucleoprotein.
    Bachand F; Kukolj G; Autexier C
    RNA; 2000 May; 6(5):778-84. PubMed ID: 10836798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A human-Tetrahymena pseudoknot chimeric telomerase RNA reconstitutes a nonprocessive enzyme in vitro that is defective in telomere elongation.
    Marie-Egyptienne DT; Cerone MA; Londoño-Vallejo JA; Autexier C
    Nucleic Acids Res; 2005; 33(17):5446-57. PubMed ID: 16192571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The 5' guanosine tracts of human telomerase RNA are recognized by the G-quadruplex binding domain of the RNA helicase DHX36 and function to increase RNA accumulation.
    Sexton AN; Collins K
    Mol Cell Biol; 2011 Feb; 31(4):736-43. PubMed ID: 21149580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of physical and functional anchor site interactions in human telomerase.
    Wyatt HD; Lobb DA; Beattie TL
    Mol Cell Biol; 2007 Apr; 27(8):3226-40. PubMed ID: 17296728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A translocation-defective telomerase with low levels of activity and processivity stabilizes short telomeres and confers immortalization.
    D'Souza Y; Chu TW; Autexier C
    Mol Biol Cell; 2013 May; 24(9):1469-79. PubMed ID: 23447707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human telomerase reverse transcriptase binds to a pre-organized hTR in vivo exposing its template.
    Zemora G; Handl S; Waldsich C
    Nucleic Acids Res; 2016 Jan; 44(1):413-25. PubMed ID: 26481359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.