These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 24923708)

  • 61. What Is Moving in Hybrid Halide Perovskite Solar Cells?
    Frost JM; Walsh A
    Acc Chem Res; 2016 Mar; 49(3):528-35. PubMed ID: 26859250
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Al
    Zhang J; Hultqvist A; Zhang T; Jiang L; Ruan C; Yang L; Cheng Y; Edoff M; Johansson EMJ
    ChemSusChem; 2017 Oct; 10(19):3810-3817. PubMed ID: 28857493
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Hindered Amine Light Stabilizers Increase the Stability of Methylammonium Lead Iodide Perovskite Against Light and Oxygen.
    Marinova N; Franckevičius M; Matulaitienė I; Devižis A; Niaura G; Gulbinas V; Delgado JL
    ChemSusChem; 2017 Oct; 10(19):3760-3764. PubMed ID: 28762644
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A Lead Iodide Perovskite Based on a Large Organic Cation for Solar Cell Applications.
    Ma C; Shen D; Lo MF; Lee CS
    Angew Chem Int Ed Engl; 2018 Jul; 57(31):9941-9944. PubMed ID: 29877017
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Elucidating the charge carrier separation and working mechanism of CH3NH3PbI(3-x)Cl(x) perovskite solar cells.
    Edri E; Kirmayer S; Mukhopadhyay S; Gartsman K; Hodes G; Cahen D
    Nat Commun; 2014 Mar; 5():3461. PubMed ID: 24613942
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Film Grain-Size Related Long-Term Stability of Inverted Perovskite Solar Cells.
    Chiang CH; Wu CG
    ChemSusChem; 2016 Sep; 9(18):2666-2672. PubMed ID: 27601006
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Tetraphenylmethane-Arylamine Hole-Transporting Materials for Perovskite Solar Cells.
    Liu X; Kong F; Cheng T; Chen W; Tan Z; Yu T; Guo F; Chen J; Yao J; Dai S
    ChemSusChem; 2017 Mar; 10(5):968-975. PubMed ID: 27976519
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Changes in the Electrical Characteristics of Perovskite Solar Cells with Aging Time.
    Mahapatra A; Parikh N; Kumar P; Kumar M; Prochowicz D; Kalam A; Tavakoli MM; Yadav P
    Molecules; 2020 May; 25(10):. PubMed ID: 32422874
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Methylamine-Gas-Induced Defect-Healing Behavior of CH3NH3PbI3 Thin Films for Perovskite Solar Cells.
    Zhou Z; Wang Z; Zhou Y; Pang S; Wang D; Xu H; Liu Z; Padture NP; Cui G
    Angew Chem Int Ed Engl; 2015 Aug; 54(33):9705-9. PubMed ID: 26118666
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Perovskite Solar Cells: Influence of Hole Transporting Materials on Power Conversion Efficiency.
    Ameen S; Rub MA; Kosa SA; Alamry KA; Akhtar MS; Shin HS; Seo HK; Asiri AM; Nazeeruddin MK
    ChemSusChem; 2016 Jan; 9(1):10-27. PubMed ID: 26692567
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Revealing the Chemistry between Band Gap and Binding Energy for Lead-/Tin-Based Trihalide Perovskite Solar Cell Semiconductors.
    Varadwaj A; Varadwaj PR; Yamashita K
    ChemSusChem; 2018 Jan; 11(2):449-463. PubMed ID: 29218846
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Role of Ferroelectric Nanodomains in the Transport Properties of Perovskite Solar Cells.
    Pecchia A; Gentilini D; Rossi D; Auf der Maur M; Di Carlo A
    Nano Lett; 2016 Feb; 16(2):988-92. PubMed ID: 26694919
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Control and Study of the Stoichiometry in Evaporated Perovskite Solar Cells.
    Teuscher J; Ulianov A; Müntener O; Grätzel M; Tétreault N
    ChemSusChem; 2015 Nov; 8(22):3847-52. PubMed ID: 26471762
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Plasmonic Gold Nanostars Incorporated into High-Efficiency Perovskite Solar Cells.
    Batmunkh M; Macdonald TJ; Peveler WJ; Bati ASR; Carmalt CJ; Parkin IP; Shapter JG
    ChemSusChem; 2017 Oct; 10(19):3750-3753. PubMed ID: 28727320
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Cuprous Oxide as a Potential Low-Cost Hole-Transport Material for Stable Perovskite Solar Cells.
    Nejand BA; Ahmadi V; Gharibzadeh S; Shahverdi HR
    ChemSusChem; 2016 Feb; 9(3):302-13. PubMed ID: 26748959
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Encapsulation of Perovskite Solar Cells for High Humidity Conditions.
    Dong Q; Liu F; Wong MK; Tam HW; Djurišić AB; Ng A; Surya C; Chan WK; Ng AM
    ChemSusChem; 2016 Sep; 9(18):2597-2603. PubMed ID: 27504719
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Highly Efficient and Uniform 1 cm
    Park IJ; Kang G; Park MA; Kim JS; Seo SW; Kim DH; Zhu K; Park T; Kim JY
    ChemSusChem; 2017 Jun; 10(12):2660-2667. PubMed ID: 28489333
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Origin of J-V Hysteresis in Perovskite Solar Cells.
    Chen B; Yang M; Priya S; Zhu K
    J Phys Chem Lett; 2016 Mar; 7(5):905-17. PubMed ID: 26886052
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Life Cycle Assessment of Titania Perovskite Solar Cell Technology for Sustainable Design and Manufacturing.
    Zhang J; Gao X; Deng Y; Li B; Yuan C
    ChemSusChem; 2015 Nov; 8(22):3882-91. PubMed ID: 26489525
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Controlled Deposition and Performance Optimization of Perovskite Solar Cells Using Ultrasonic Spray-Coating of Photoactive Layers.
    Chang WC; Lan DH; Lee KM; Wang XF; Liu CL
    ChemSusChem; 2017 Apr; 10(7):1405-1412. PubMed ID: 28026151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.