BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 24924191)

  • 1. FGF signaling activates a Sox9-Sox10 pathway for the formation and branching morphogenesis of mouse ocular glands.
    Chen Z; Huang J; Liu Y; Dattilo LK; Huh SH; Ornitz D; Beebe DC
    Development; 2014 Jul; 141(13):2691-701. PubMed ID: 24924191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Barx2 and Fgf10 regulate ocular glands branching morphogenesis by controlling extracellular matrix remodeling.
    Tsau C; Ito M; Gromova A; Hoffman MP; Meech R; Makarenkova HP
    Development; 2011 Aug; 138(15):3307-17. PubMed ID: 21750040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular regulation of ocular gland development.
    Miletich I
    Semin Cell Dev Biol; 2019 Jul; 91():66-74. PubMed ID: 30266427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FGF10 is an inducer and Pax6 a competence factor for lacrimal gland development.
    Makarenkova HP; Ito M; Govindarajan V; Faber SC; Sun L; McMahon G; Overbeek PA; Lang RA
    Development; 2000 Jun; 127(12):2563-72. PubMed ID: 10821755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fgf10 and Sox9 are essential for the establishment of distal progenitor cells during mouse salivary gland development.
    Chatzeli L; Gaete M; Tucker AS
    Development; 2017 Jun; 144(12):2294-2305. PubMed ID: 28506998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lacrimal gland development and Fgf10-Fgfr2b signaling are controlled by 2-O- and 6-O-sulfated heparan sulfate.
    Qu X; Carbe C; Tao C; Powers A; Lawrence R; van Kuppevelt TH; Cardoso WV; Grobe K; Esko JD; Zhang X
    J Biol Chem; 2011 Apr; 286(16):14435-44. PubMed ID: 21357686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endogenous and ectopic gland induction by FGF-10.
    Govindarajan V; Ito M; Makarenkova HP; Lang RA; Overbeek PA
    Dev Biol; 2000 Sep; 225(1):188-200. PubMed ID: 10964474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alx4 relays sequential FGF signaling to induce lacrimal gland morphogenesis.
    Garg A; Bansal M; Gotoh N; Feng GS; Zhong J; Wang F; Kariminejad A; Brooks S; Zhang X
    PLoS Genet; 2017 Oct; 13(10):e1007047. PubMed ID: 29028795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bud specific N-sulfation of heparan sulfate regulates Shp2-dependent FGF signaling during lacrimal gland induction.
    Pan Y; Carbe C; Powers A; Zhang EE; Esko JD; Grobe K; Feng GS; Zhang X
    Development; 2008 Jan; 135(2):301-10. PubMed ID: 18077586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bmp7 regulates branching morphogenesis of the lacrimal gland by promoting mesenchymal proliferation and condensation.
    Dean C; Ito M; Makarenkova HP; Faber SC; Lang RA
    Development; 2004 Sep; 131(17):4155-65. PubMed ID: 15280212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of the forkhead transcription factor, Foxc1, in the development of the mouse lacrimal gland.
    Mattiske D; Sommer P; Kidson SH; Hogan BL
    Dev Dyn; 2006 Apr; 235(4):1074-80. PubMed ID: 16470615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FGF ligands of the postnatal mammary stroma regulate distinct aspects of epithelial morphogenesis.
    Zhang X; Martinez D; Koledova Z; Qiao G; Streuli CH; Lu P
    Development; 2014 Sep; 141(17):3352-62. PubMed ID: 25078648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordination of epithelial branching and salivary gland lumen formation by Wnt and FGF signals.
    Patel N; Sharpe PT; Miletich I
    Dev Biol; 2011 Oct; 358(1):156-67. PubMed ID: 21806977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Major ocular glands (harderian gland and lacrimal gland) of the musk shrew (Suncus murinus) with a review on the comparative anatomy and histology of the mammalian lacrimal glands.
    Sakai T
    J Morphol; 1989 Jul; 201(1):39-57. PubMed ID: 2664187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alligator tears: a reevaluation of the lacrimal apparatus of the crocodilians.
    Rehorek SJ; Legenzoff EJ; Carmody K; Smith TD; Sedlmayr JC
    J Morphol; 2005 Dec; 266(3):298-308. PubMed ID: 16163706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Connexin 43 Is Necessary for Salivary Gland Branching Morphogenesis and FGF10-induced ERK1/2 Phosphorylation.
    Yamada A; Futagi M; Fukumoto E; Saito K; Yoshizaki K; Ishikawa M; Arakaki M; Hino R; Sugawara Y; Ishikawa M; Naruse M; Miyazaki K; Nakamura T; Fukumoto S
    J Biol Chem; 2016 Jan; 291(2):904-12. PubMed ID: 26565022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycosaminoglycan-dependent restriction of FGF diffusion is necessary for lacrimal gland development.
    Qu X; Pan Y; Carbe C; Powers A; Grobe K; Zhang X
    Development; 2012 Aug; 139(15):2730-9. PubMed ID: 22745308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FGF and EDA pathways control initiation and branching of distinct subsets of developing nasal glands.
    May AJ; Headon D; Rice DP; Noble A; Tucker AS
    Dev Biol; 2016 Nov; 419(2):348-356. PubMed ID: 27590203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FGFR2b signaling regulates ex vivo submandibular gland epithelial cell proliferation and branching morphogenesis.
    Steinberg Z; Myers C; Heim VM; Lathrop CA; Rebustini IT; Stewart JS; Larsen M; Hoffman MP
    Development; 2005 Mar; 132(6):1223-34. PubMed ID: 15716343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the role of prolactin in the development and function of the lacrimal and harderian glands using genetically modified mice.
    McClellan KA; Robertson FG; Kindblom J; Wennbo H; Törnell J; Bouchard B; Kelly PA; Ormandy CJ
    Invest Ophthalmol Vis Sci; 2001 Jan; 42(1):23-30. PubMed ID: 11133844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.