BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 24924196)

  • 1. Larval mesenchyme cell specification in the primitive echinoid occurs independently of the double-negative gate.
    Yamazaki A; Kidachi Y; Yamaguchi M; Minokawa T
    Development; 2014 Jul; 141(13):2669-79. PubMed ID: 24924196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Juvenile skeletogenesis in anciently diverged sea urchin clades.
    Gao F; Thompson JR; Petsios E; Erkenbrack E; Moats RA; Bottjer DJ; Davidson EH
    Dev Biol; 2015 Apr; 400(1):148-58. PubMed ID: 25641694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expession patterns of mesenchyme specification genes in two distantly related echinoids, Glyptocidaris crenularis and Echinocardium cordatum.
    Yamazaki A; Minokawa T
    Gene Expr Patterns; 2015 Mar; 17(2):87-97. PubMed ID: 25801498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of hesC and gcm in echinoid larval mesenchyme cell development.
    Yamazaki A; Minokawa T
    Dev Growth Differ; 2016 Apr; 58(3):315-26. PubMed ID: 27046223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Micromere" formation and expression of endomesoderm regulatory genes during embryogenesis of the primitive echinoid Prionocidaris baculosa.
    Yamazaki A; Kidachi Y; Minokawa T
    Dev Growth Differ; 2012 Jun; 54(5):566-78. PubMed ID: 22680788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Divergence of ectodermal and mesodermal gene regulatory network linkages in early development of sea urchins.
    Erkenbrack EM
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):E7202-E7211. PubMed ID: 27810959
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Yamazaki A; Morino Y; Urata M; Yamaguchi M; Minokawa T; Furukawa R; Kondo M; Wada H
    Development; 2020 Feb; 147(4):. PubMed ID: 32001441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural development in Eucidaris tribuloides and the evolutionary history of the echinoid larval nervous system.
    Bishop CD; MacNeil KE; Patel D; Taylor VJ; Burke RD
    Dev Biol; 2013 May; 377(1):236-44. PubMed ID: 23506838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins.
    Rafiq K; Shashikant T; McManus CJ; Ettensohn CA
    Development; 2014 Feb; 141(4):950-61. PubMed ID: 24496631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-function correlation of micro1 for micromere specification in sea urchin embryos.
    Yamazaki A; Ki S; Kokubo T; Yamaguchi M
    Mech Dev; 2009; 126(8-9):611-23. PubMed ID: 19549568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional evolution of Ets in echinoderms with focus on the evolution of echinoderm larval skeletons.
    Koga H; Matsubara M; Fujitani H; Miyamoto N; Komatsu M; Kiyomoto M; Akasaka K; Wada H
    Dev Genes Evol; 2010 Sep; 220(3-4):107-15. PubMed ID: 20680330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paleogenomics of echinoids reveals an ancient origin for the double-negative specification of micromeres in sea urchins.
    Thompson JR; Erkenbrack EM; Hinman VF; McCauley BS; Petsios E; Bottjer DJ
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):5870-5877. PubMed ID: 28584090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alx1, a member of the Cart1/Alx3/Alx4 subfamily of Paired-class homeodomain proteins, is an essential component of the gene network controlling skeletogenic fate specification in the sea urchin embryo.
    Ettensohn CA; Illies MR; Oliveri P; De Jong DL
    Development; 2003 Jul; 130(13):2917-28. PubMed ID: 12756175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative studies on the skeletogenic mesenchyme of echinoids.
    Minokawa T
    Dev Biol; 2017 Jul; 427(2):212-218. PubMed ID: 27856261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an embryonic skeletogenic mesenchyme lineage in a sea cucumber reveals the trajectory of change for the evolution of novel structures in echinoderms.
    McCauley BS; Wright EP; Exner C; Kitazawa C; Hinman VF
    Evodevo; 2012 Aug; 3(1):17. PubMed ID: 22877149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reorganization of sea urchin gene regulatory networks at least 268 million years ago as revealed by oldest fossil cidaroid echinoid.
    Thompson JR; Petsios E; Davidson EH; Erkenbrack EM; Gao F; Bottjer DJ
    Sci Rep; 2015 Oct; 5():15541. PubMed ID: 26486232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Conserved Role for VEGF Signaling in Specification of Homologous Mesenchymal Cell Types Positioned at Spatially Distinct Developmental Addresses in Early Development of Sea Urchins.
    Erkenbrack EM; Petsios E
    J Exp Zool B Mol Dev Evol; 2017 Jul; 328(5):423-432. PubMed ID: 28544452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ancestral state reconstruction by comparative analysis of a GRN kernel operating in echinoderms.
    Erkenbrack EM; Ako-Asare K; Miller E; Tekelenburg S; Thompson JR; Romano L
    Dev Genes Evol; 2016 Jan; 226(1):37-45. PubMed ID: 26781941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conserved early expression patterns of micromere specification genes in two echinoid species belonging to the orders clypeasteroida and echinoida.
    Yamazaki A; Furuzawa Y; Yamaguchi M
    Dev Dyn; 2010 Dec; 239(12):3391-403. PubMed ID: 21046631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The origin of spicule-forming cells in a 'primitive' sea urchin (Eucidaris tribuloides) which appears to lack primary mesenchyme cells.
    Wray GA; McClay DR
    Development; 1988 Jun; 103(2):305-15. PubMed ID: 3066611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.