These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 24924221)

  • 21. Retinotopic variations of the negative blood-oxygen-level dependent hemodynamic response function in human primary visual cortex.
    de la Rosa N; Ress D; Taylor AJ; Kim JH
    J Neurophysiol; 2021 Apr; 125(4):1045-1057. PubMed ID: 33625949
    [TBL] [Abstract][Full Text] [Related]  

  • 22. BOLD fMRI of the visual cortex: quantitative responses measured with a graded stimulus at 1.5 Tesla.
    Mohamed FB; Pinus AB; Faro SH; Patel D; Tracy JI
    J Magn Reson Imaging; 2002 Aug; 16(2):128-36. PubMed ID: 12203759
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamics and nonlinearities of the BOLD response at very short stimulus durations.
    Yeşilyurt B; Uğurbil K; Uludağ K
    Magn Reson Imaging; 2008 Sep; 26(7):853-62. PubMed ID: 18479876
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rate dependence of human visual cortical response due to brief stimulation: an event-related fMRI study.
    Ozus B; Liu HL; Chen L; Iyer MB; Fox PT; Gao JH
    Magn Reson Imaging; 2001 Jan; 19(1):21-5. PubMed ID: 11295342
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The temporal frequency tuning of human visual cortex investigated using synthetic aperture magnetometry.
    Fawcett IP; Barnes GR; Hillebrand A; Singh KD
    Neuroimage; 2004 Apr; 21(4):1542-53. PubMed ID: 15050578
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Disparity of activation onset in sensory cortex from simultaneous auditory and visual stimulation: Differences between perfusion and blood oxygenation level-dependent functional magnetic resonance imaging.
    Liu HL; Feng CM; Li J; Su FC; Li N; Glahn D; Gao JH
    J Magn Reson Imaging; 2005 Feb; 21(2):111-7. PubMed ID: 15666409
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Achromatic temporal-frequency responses of human lateral geniculate nucleus and primary visual cortex.
    Bayram A; Karahan E; Bilgiç B; Ademoglu A; Demiralp T
    Vision Res; 2016 Oct; 127():177-185. PubMed ID: 27613997
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Methods for determining frequency- and region-dependent relationships between estimated LFPs and BOLD responses in humans.
    Martuzzi R; Murray MM; Meuli RA; Thiran JP; Maeder PP; Michel CM; Grave de Peralta Menendez R; Gonzalez Andino SL
    J Neurophysiol; 2009 Jan; 101(1):491-502. PubMed ID: 19005004
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The influence of cortical maturation on the BOLD response: an fMRI study of visual cortex in children.
    Marcar VL; Strässle AE; Loenneker T; Schwarz U; Martin E
    Pediatr Res; 2004 Dec; 56(6):967-74. PubMed ID: 15531742
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous EEG/fMRI analysis of the resonance phenomena in steady-state visual evoked responses.
    Bayram A; Bayraktaroglu Z; Karahan E; Erdogan B; Bilgic B; Ozker M; Kasikci I; Duru AD; Ademoglu A; Oztürk C; Arikan K; Tarhan N; Demiralp T
    Clin EEG Neurosci; 2011 Apr; 42(2):98-106. PubMed ID: 21675599
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of contrast-response functions from multifocal visual-evoked potentials (mfVEPs) and functional MRI responses.
    Park JC; Zhang X; Ferrera J; Hirsch J; Hood DC
    J Vis; 2008 Oct; 8(10):8.1-12. PubMed ID: 19146350
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reduced BOLD response to periodic visual stimulation.
    Parkes LM; Fries P; Kerskens CM; Norris DG
    Neuroimage; 2004 Jan; 21(1):236-43. PubMed ID: 14741661
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Origin of synchronized low-frequency blood oxygen level-dependent fluctuations in the primary visual cortex.
    Anderson JS
    AJNR Am J Neuroradiol; 2008 Oct; 29(9):1722-9. PubMed ID: 18635612
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnocellular and parvocellular visual pathways have different blood oxygen level-dependent signal time courses in human primary visual cortex.
    Liu CS; Bryan RN; Miki A; Woo JH; Liu GT; Elliott MA
    AJNR Am J Neuroradiol; 2006 Sep; 27(8):1628-34. PubMed ID: 16971600
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Post-stimulus fMRI and EEG responses: Evidence for a neuronal origin hypothesised to be inhibitory.
    Mullinger KJ; Cherukara MT; Buxton RB; Francis ST; Mayhew SD
    Neuroimage; 2017 Aug; 157():388-399. PubMed ID: 28610902
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aging effects on functional auditory and visual processing using fMRI with variable sensory loading.
    Cliff M; Joyce DW; Lamar M; Dannhauser T; Tracy DK; Shergill SS
    Cortex; 2013 May; 49(5):1304-13. PubMed ID: 22578707
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Orientation-tuned FMRI adaptation in human visual cortex.
    Fang F; Murray SO; Kersten D; He S
    J Neurophysiol; 2005 Dec; 94(6):4188-95. PubMed ID: 16120668
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modulation of activity in human visual area V1 during memory masking.
    Sneve MH; Alnæs D; Endestad T; Greenlee MW; Magnussen S
    PLoS One; 2011 Apr; 6(4):e18651. PubMed ID: 21525988
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Correspondence between fMRI and electrophysiology during visual motion processing in human MT.
    Gaglianese A; Vansteensel MJ; Harvey BM; Dumoulin SO; Petridou N; Ramsey NF
    Neuroimage; 2017 Jul; 155():480-489. PubMed ID: 28389384
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatial frequency modulates the human visual cortical response to temporal frequency variation: an fMRI study.
    Mirzajani A; Oghabian MA; Riyahi-Alam N; Saberi H; Firouznia K; Bakhtiary M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1032-5. PubMed ID: 17946438
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.