BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 24924259)

  • 1. Modeling the shear rate and pressure drop in a hydrodynamic cavitation reactor with experimental validation based on KI decomposition studies.
    Badve MP; Alpar T; Pandit AB; Gogate PR; Csoka L
    Ultrason Sonochem; 2015 Jan; 22():272-7. PubMed ID: 24924259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation into cavitational intensity and COD reduction performance of the pinned disc reactor with various rotor-stator arrangements.
    Gostiša J; Zupanc M; Dular M; Širok B; Levstek M; Bizjan B
    Ultrason Sonochem; 2021 Sep; 77():105669. PubMed ID: 34303127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamic cavitation as a novel approach for delignification of wheat straw for paper manufacturing.
    Badve MP; Gogate PR; Pandit AB; Csoka L
    Ultrason Sonochem; 2014 Jan; 21(1):162-8. PubMed ID: 23968577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing the rotor design for controlled-shear affinity filtration using computational fluid dynamics.
    Francis P; Martinez DM; Taghipour F; Bowen BD; Haynes CA
    Biotechnol Bioeng; 2006 Dec; 95(6):1207-17. PubMed ID: 16937405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of cavitational bubbles and design of a hydrodynamic cavitational reactor: cluster approach.
    Kanthale PM; Gogate PR; Pandit AB; Wilhelm AM
    Ultrason Sonochem; 2005 Aug; 12(6):441-52. PubMed ID: 15848106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cavitation characteristics analysis of a novel rotor-radial groove hydrodynamic cavitation reactor.
    Song Y; Hou R; Liu Z; Liu J; Zhang W; Zhang L
    Ultrason Sonochem; 2022 May; 86():106028. PubMed ID: 35569441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental and numerical studies on the cavitation in an advanced rotational hydrodynamic cavitation reactor for water treatment.
    Sun X; Xuan X; Song Y; Jia X; Ji L; Zhao S; Yong Yoon J; Chen S; Liu J; Wang G
    Ultrason Sonochem; 2021 Jan; 70():105311. PubMed ID: 32871384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational analysis of flow conditions in hydrodynamic cavitation generator for water treatment processes.
    Gostiša J; Drešar P; Hočevar M; Dular M
    Can J Chem Eng; 2022 Dec; 100(12):3502-3516. PubMed ID: 36605789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental investigation of the thermal and disinfection performances of a novel hydrodynamic cavitation reactor.
    Sun X; Park JJ; Kim HS; Lee SH; Seong SJ; Om AS; Yoon JY
    Ultrason Sonochem; 2018 Dec; 49():13-23. PubMed ID: 30056026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous production of nanoemulsion for skincare product using a 3D-printed rotor-stator hydrodynamic cavitation reactor.
    Matman N; Min Oo Y; Amnuaikit T; Somnuk K
    Ultrason Sonochem; 2022 Feb; 83():105926. PubMed ID: 35091233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodiesel production process intensification using a rotor-stator type generator of hydrodynamic cavitation.
    Crudo D; Bosco V; Cavaglià G; Grillo G; Mantegna S; Cravotto G
    Ultrason Sonochem; 2016 Nov; 33():220-225. PubMed ID: 27245973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the arrangement of cavitation generation unit on the performance of an advanced rotational hydrodynamic cavitation reactor.
    Sun X; Xia G; You W; Jia X; Manickam S; Tao Y; Zhao S; Yoon JY; Xuan X
    Ultrason Sonochem; 2023 Oct; 99():106544. PubMed ID: 37544171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous acid-catalyzed esterification using a 3D printed rotor-stator hydrodynamic cavitation reactor reduces free fatty acid content in mixed crude palm oil.
    Min Oo Y; Prateepchaikul G; Somnuk K
    Ultrason Sonochem; 2021 Apr; 72():105419. PubMed ID: 33316734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational and experimental evaluation of the fluid dynamics and hemocompatibility of the CentriMag blood pump.
    Zhang J; Gellman B; Koert A; Dasse KA; Gilbert RJ; Griffith BP; Wu ZJ
    Artif Organs; 2006 Mar; 30(3):168-77. PubMed ID: 16480391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and numeric evaluation of a novel axial-flow left ventricular assist device.
    Toptop K; Kadipasaoglu KA
    ASAIO J; 2013; 59(3):230-9. PubMed ID: 23644609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limitations of the Weissler reaction as a model reaction for measuring the efficiency of hydrodynamic cavitation.
    Morison KR; Hutchinson CA
    Ultrason Sonochem; 2009 Jan; 16(1):176-83. PubMed ID: 18701337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of free fatty acid reduction from mixed crude palm oil using 3D-printed rotor-stator hydrodynamic cavitation: An experimental study of geometric characteristics of the inner hole.
    Min Oo Y; Somnuk K
    Ultrason Sonochem; 2023 Aug; 98():106472. PubMed ID: 37348259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water disinfection by hydrodynamic cavitation in a rotor-stator device.
    Cerecedo LM; Dopazo C; Gomez-Lus R
    Ultrason Sonochem; 2018 Nov; 48():71-78. PubMed ID: 30080588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical investigation on hydrodynamics and biocompatibility of a magnetically suspended axial blood pump.
    Zhu X; Zhang M; Zhang G; Liu H
    ASAIO J; 2006; 52(6):624-9. PubMed ID: 17117050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.