These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 2492468)

  • 1. Reducing bone lead content by chelation treatment in chronic lead poisoning: an in vivo X-ray fluorescence and bone biopsy study.
    Batuman V; Wedeen RP; Bogden JD; Balestra DJ; Jones K; Schidlovsky G
    Environ Res; 1989 Feb; 48(1):70-5. PubMed ID: 2492468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removing lead from bone: clinical implications of bone lead stores.
    Wedeen RP
    Neurotoxicology; 1992; 13(4):843-52. PubMed ID: 1302310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical application of in vivo tibial K-XRF for monitoring lead stores.
    Wedeen RP; Ty A; Udasin I; Favata EA; Jones KW
    Arch Environ Health; 1995; 50(5):355-61. PubMed ID: 7574889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequential measurements of bone lead content by L X-ray fluorescence in CaNa2EDTA-treated lead-toxic children.
    Rosen JF; Markowitz ME; Bijur PE; Jenks ST; Wielopolski L; Kalef-Ezra JA; Slatkin DN
    Environ Health Perspect; 1991 Feb; 91():57-62. PubMed ID: 1904023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone lead, hypertension, and lead nephropathy.
    Wedeen RP
    Environ Health Perspect; 1988 Jun; 78():57-60. PubMed ID: 3203647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of calcium disodium versenate (CaNa2EDTA) chelation in moderate childhood lead poisoning.
    Markowitz ME; Bijur PE; Ruff H; Rosen JF
    Pediatrics; 1993 Aug; 92(2):265-71. PubMed ID: 8337028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of repeated occupational exposure to lead, cessation of exposure, and chelation on levels of lead in bone.
    Hu H; Pepper L; Goldman R
    Am J Ind Med; 1991; 20(6):723-35. PubMed ID: 1805610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic renal failure with gout: a marker of chronic lead poisoning.
    Craswell PW; Price J; Boyle PD; Heazlewood VJ; Baddeley H; Lloyd HM; Thomas BJ; Thomas BW
    Kidney Int; 1984 Sep; 26(3):319-23. PubMed ID: 6439940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of in vivo X-ray fluorescence determination of skeletal lead stores.
    Sokas RK; Besarab A; McDiarmid MA; Shapiro IM; Bloch P
    Arch Environ Health; 1990; 45(5):268-72. PubMed ID: 2124094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray fluorescence: issues surrounding the application of a new tool for measuring burden of lead.
    Hu H; Milder FL; Burger DE
    Environ Res; 1989 Aug; 49(2):295-317. PubMed ID: 2753011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Failure of chelation therapy in lead nephropathy.
    Germain MJ; Braden GL; Fitzgibbons JP
    Arch Intern Med; 1984 Dec; 144(12):2419-20. PubMed ID: 6439141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic lead nephropathy in Queensland: alternative methods of diagnosis.
    Craswell PW; Price J; Boyle PD; Heazlewood VJ; Baddeley H; Lloyd HM; Thomas BJ; Thomas BW; Williams GM
    Aust N Z J Med; 1986 Feb; 16(1):11-9. PubMed ID: 3085647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo bone lead measurements: a rapid monitoring method for cumulative lead exposure.
    Wielopolski L; Ellis KJ; Vaswani AN; Cohn SH; Greenberg A; Puschett JB; Parkinson DK; Fetterolf DE; Landrigan PJ
    Am J Ind Med; 1986; 9(3):221-6. PubMed ID: 3963004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequential measurements of bone lead content by L X-ray fluorescence in CaNa2EDTA-treated lead-toxic children.
    Rosen JF; Markowitz ME; Bijur PE; Jenks ST; Wielopolski L; Kalef-Ezra JA; Slatkin DN
    Environ Health Perspect; 1991 Jun; 93():271-7. PubMed ID: 1773798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The distribution of lead in human hemopoietic tissue and spongy bone after lead poisoning and Ca-EDTA chelation therapy. Observations made by atomic absorption spectroscopy, laser microbeam mass analysis and electron microbeam X-ray analysis.
    Flood PR; Schmidt PF; Wesenberg GR; Gadeholt H
    Arch Toxicol; 1988; 62(4):295-300. PubMed ID: 3149183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical applications of L-line X-ray fluorescence to estimate bone lead values in lead-poisoned young children and in children, teenagers, and adults from lead-exposed and non-lead-exposed suburban communities in the United States.
    Rosen JF
    Toxicol Ind Health; 1997; 13(2-3):211-8. PubMed ID: 9200789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental lead exposure and progression of chronic renal diseases in patients without diabetes.
    Lin JL; Lin-Tan DT; Hsu KH; Yu CC
    N Engl J Med; 2003 Jan; 348(4):277-86. PubMed ID: 12540640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility of a portable X-ray fluorescence device for bone lead measurements of condor bones.
    Specht AJ; Parish CN; Wallens EK; Watson RT; Nie LH; Weisskopf MG
    Sci Total Environ; 2018 Feb; 615():398-403. PubMed ID: 28988075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. L-line x-ray fluorescence of cortical bone lead compared with the CaNa2EDTA test in lead-toxic children: public health implications.
    Rosen JF; Markowitz ME; Bijur PE; Jenks ST; Wielopolski L; Kalef-Ezra JA; Slatkin DN
    Proc Natl Acad Sci U S A; 1989 Jan; 86(2):685-9. PubMed ID: 2492111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic industrial exposure to lead in 63 subjects. II. Evaluation of chelation therapy.
    Strickland GT; Hwang YF; Chang NK; Blackwell RQ
    Southeast Asian J Trop Med Public Health; 1976 Dec; 7(4):569-74. PubMed ID: 828980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.