BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 24924739)

  • 1. The response of the neuronal adaptive system to background illumination and readaptation to dark in the immature retina.
    Wang L; El Azazi M; Eklund A; Burstedt M; Wachtmeister L
    Acta Ophthalmol; 2015 Mar; 93(2):146-53. PubMed ID: 24924739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal adaptation in the human retina: a study of the single oscillatory response in dark adaptation and mesopic background illumination.
    Lundström AL; Wang L; Wachtmeister L
    Acta Ophthalmol Scand; 2007 Nov; 85(7):756-63. PubMed ID: 17488317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Background light adaptation of the retinal neuronal adaptive system. II. Dynamic effects.
    el Azazi M; Wang L; Eklund A; Wachtmeister L
    Doc Ophthalmol; 2004 Sep; 109(2):201-13. PubMed ID: 15881266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Background light adaptation of the retinal neuronal adaptive system. I. Effect of background light intensity.
    Wang L; el Azazi M; Eklund A; Lillemor W
    Doc Ophthalmol; 2001 Jul; 103(1):13-26. PubMed ID: 11678157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesopic background lights enhance dark-adapted cone ERG flash responses in the intact mouse retina: a possible role for gap junctional decoupling.
    Heikkinen H; Vinberg F; Nymark S; Koskelainen A
    J Neurophysiol; 2011 May; 105(5):2309-18. PubMed ID: 21389302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Characteristics of dark-adapted and light-adapted oscillatory potentials in human electroretinogram].
    Yin JP; Lei B; Peng H; Wang J; Fu XN
    Nan Fang Yi Ke Da Xue Xue Bao; 2011 Dec; 31(12):2057-60. PubMed ID: 22200712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of negative potentials in the light-adapted ERG of cat retina.
    Frishman LJ; Steinberg RH
    J Neurophysiol; 1990 Jun; 63(6):1333-46. PubMed ID: 2358881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ERG OFF response in frog retina: light adaptation and effect of 2-amino-4-phosphonobutyrate.
    Popova E; Kupenova P; Vitanova L; Mitova L
    Acta Physiol Scand; 1995 Jul; 154(3):377-86. PubMed ID: 7572235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroretinography of wild-type and Cry mutant mice reveals circadian tuning of photopic and mesopic retinal responses.
    Cameron MA; Barnard AR; Hut RA; Bonnefont X; van der Horst GT; Hankins MW; Lucas RJ
    J Biol Rhythms; 2008 Dec; 23(6):489-501. PubMed ID: 19060258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The postnatal development of the oscillatory potentials of the electroretinogram. IV. Mesopic characteristics.
    el Azazi M; Wachtmeister L
    Acta Ophthalmol (Copenh); 1992 Apr; 70(2):194-200. PubMed ID: 1609567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oscillatory potentials in the retina: what do they reveal.
    Wachtmeister L
    Prog Retin Eye Res; 1998 Oct; 17(4):485-521. PubMed ID: 9777648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency spectrum and amplitude analysis of dark- and light-adapted oscillatory potentials in albino mouse, rat and rabbit.
    Zhang K; Yao G; Gao Y; Hofeldt KJ; Lei B
    Doc Ophthalmol; 2007 Sep; 115(2):85-93. PubMed ID: 17541795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light adaptation of the human photopic oscillatory potentials: influence of the length of the dark adaptation period.
    Benoit J; Lachapelle P
    Doc Ophthalmol; 1995; 89(3):267-76. PubMed ID: 7555594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial properties of the oscillatory potentials of the frog electroretinogram in relation to state of adaptation.
    Wachtmeister L; Hahn I
    Acta Ophthalmol (Copenh); 1987 Dec; 65(6):724-30. PubMed ID: 3501666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oscillatory potentials and the b-Wave: partial masking and interdependence in dark adaptation and diabetes in the rat.
    Layton CJ; Safa R; Osborne NN
    Graefes Arch Clin Exp Ophthalmol; 2007 Sep; 245(9):1335-45. PubMed ID: 17265029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light exposure can reduce selectively or abolish the C-wave of the albino rat electroretinogram.
    Graves AL; Green DG; Fisher LJ
    Invest Ophthalmol Vis Sci; 1985 Mar; 26(3):388-93. PubMed ID: 3972521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of sustained and transient lateral inhibitory mechanisms in the mudpuppy retina during light adaptation.
    Cook PB; McReynolds JS
    J Neurophysiol; 1998 Jan; 79(1):197-204. PubMed ID: 9425191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The extraction and analysis of a- and b- wave from electroretinogram in human].
    Chen ZH; Zheng CW; Lei B
    Zhonghua Yan Ke Za Zhi; 2013 Dec; 49(12):1064-8. PubMed ID: 24499691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in rod and cone-driven oscillatory potentials in the aging human retina.
    Dimopoulos IS; Freund PR; Redel T; Dornstauder B; Gilmour G; Sauvé Y
    Invest Ophthalmol Vis Sci; 2014 Jul; 55(8):5058-73. PubMed ID: 25034601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of proximal retinal neurons to b- and d-waves of frog electroretinogram under different conditions of light adaptation.
    Popova E; Kupenova P
    Vision Res; 2009 Jul; 49(15):2001-10. PubMed ID: 19463849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.