These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 2492493)
21. Control of transducer methylation levels in Escherichia coli: investigation of components essential for modulation of methylation and demethylation reactions. Russell CB; Stewart RC; Dahlquist FW J Bacteriol; 1989 Jul; 171(7):3609-18. PubMed ID: 2661528 [TBL] [Abstract][Full Text] [Related]
22. Novel methyl transfer during chemotaxis in Bacillus subtilis. Thoelke MS; Kirby JR; Ordal GW Biochemistry; 1989 Jun; 28(13):5585-9. PubMed ID: 2505839 [TBL] [Abstract][Full Text] [Related]
23. N-terminal half of CheB is involved in methylesterase response to negative chemotactic stimuli in Escherichia coli. Stewart RC; Dahlquist FW J Bacteriol; 1988 Dec; 170(12):5728-38. PubMed ID: 3056911 [TBL] [Abstract][Full Text] [Related]
24. Demethylation of methyl-accepting chemotaxis proteins in Escherichia coli induced by the repellents glycerol and ethylene glycol. Oosawa K; Imae Y J Bacteriol; 1984 Feb; 157(2):576-81. PubMed ID: 6363388 [TBL] [Abstract][Full Text] [Related]
25. Batch production of deacetyl 7-aminocephalosporanic acid by immobilized cephalosporin-C deacetylase. Takimoto A; Takakura T; Tani H; Yagi S; Mitsushima K Appl Microbiol Biotechnol; 2004 Aug; 65(3):263-7. PubMed ID: 15069587 [TBL] [Abstract][Full Text] [Related]
26. Evidence for an intermediate methyl-acceptor for chemotaxis in Bacillus subtilis. Thoelke MS; Bedale WA; Nettleton DO; Ordal GW J Biol Chem; 1987 Feb; 262(6):2811-6. PubMed ID: 3102476 [TBL] [Abstract][Full Text] [Related]
27. FRET Analysis of the Chemotaxis Pathway Response. Paulick A; Sourjik V Methods Mol Biol; 2018; 1729():107-126. PubMed ID: 29429087 [TBL] [Abstract][Full Text] [Related]
28. Biotin synthase of Bacillus subtilis shows less reactivity than that of Escherichia coli in in vitro reaction systems. Kiyasu T; Asakura A; Nagahashi Y; Hoshino T Arch Microbiol; 2002 Dec; 179(1):26-32. PubMed ID: 12471501 [TBL] [Abstract][Full Text] [Related]
29. Chemotactic transducer proteins of Escherichia coli exhibit homology with methyl-accepting proteins from distantly related bacteria. Nowlin DM; Nettleton DO; Ordal GW; Hazelbauer GL J Bacteriol; 1985 Jul; 163(1):262-6. PubMed ID: 3924893 [TBL] [Abstract][Full Text] [Related]
30. Design and diversity in bacterial chemotaxis: a comparative study in Escherichia coli and Bacillus subtilis. Rao CV; Kirby JR; Arkin AP PLoS Biol; 2004 Feb; 2(2):E49. PubMed ID: 14966542 [TBL] [Abstract][Full Text] [Related]
31. Attractants and repellents control demethylation of methylated chemotaxis proteins in Escherichia coli. Toews ML; Goy MF; Springer MS; Adler J Proc Natl Acad Sci U S A; 1979 Nov; 76(11):5544-8. PubMed ID: 392505 [TBL] [Abstract][Full Text] [Related]
32. Mutations that affect control of the methylesterase activity of CheB, a component of the chemotaxis adaptation system in Escherichia coli. Stewart RC; Roth AF; Dahlquist FW J Bacteriol; 1990 Jun; 172(6):3388-99. PubMed ID: 2188960 [TBL] [Abstract][Full Text] [Related]
33. Synthesis of sn-glycerol 3-phosphate, a key precursor of membrane lipids, in Bacillus subtilis. Morbidoni HR; de Mendoza D; Cronan JE J Bacteriol; 1995 Oct; 177(20):5899-905. PubMed ID: 7592341 [TBL] [Abstract][Full Text] [Related]
34. Methyl transfer in chemotaxis toward sugars by Bacillus subtilis. Thoelke MS; Casper JM; Ordal GW J Bacteriol; 1990 Feb; 172(2):1148-50. PubMed ID: 2105294 [TBL] [Abstract][Full Text] [Related]
35. Role of methylation in aerotaxis in Bacillus subtilis. Wong LS; Johnson MS; Zhulin IB; Taylor BL J Bacteriol; 1995 Jul; 177(14):3985-91. PubMed ID: 7608071 [TBL] [Abstract][Full Text] [Related]