These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 24925127)
1. A novel electrospun biphasic scaffold provides optimal three-dimensional topography for in vitro co-culture of airway epithelial and fibroblast cells. Morris GE; Bridge JC; Brace LA; Knox AJ; Aylott JW; Brightling CE; Ghaemmaghami AM; Rose FR Biofabrication; 2014 Sep; 6(3):035014. PubMed ID: 24925127 [TBL] [Abstract][Full Text] [Related]
2. Adapting the Electrospinning Process to Provide Three Unique Environments for a Tri-layered In Vitro Model of the Airway Wall. Bridge JC; Aylott JW; Brightling CE; Ghaemmaghami AM; Knox AJ; Lewis MP; Rose FR; Morris GE J Vis Exp; 2015 Jul; (101):e52986. PubMed ID: 26275100 [TBL] [Abstract][Full Text] [Related]
3. Electrospinning and evaluation of PHBV-based tissue engineering scaffolds with different fibre diameters, surface topography and compositions. Tong HW; Wang M; Lu WW J Biomater Sci Polym Ed; 2012; 23(6):779-806. PubMed ID: 21418747 [TBL] [Abstract][Full Text] [Related]
4. A novel technique for the production of electrospun scaffolds with tailored three-dimensional micro-patterns employing additive manufacturing. Rogers CM; Morris GE; Gould TW; Bail R; Toumpaniari S; Harrington H; Dixon JE; Shakesheff KM; Segal J; Rose FR Biofabrication; 2014 Sep; 6(3):035003. PubMed ID: 24722371 [TBL] [Abstract][Full Text] [Related]
5. Low-temperature electrospun silk scaffold for in vitro mucosal modeling. Bulysheva AA; Bowlin GL; Klingelhutz AJ; Yeudall WA J Biomed Mater Res A; 2012 Mar; 100(3):757-67. PubMed ID: 22238242 [TBL] [Abstract][Full Text] [Related]
6. The development of a tissue-engineered tracheobronchial epithelial model using a bilayered collagen-hyaluronate scaffold. O'Leary C; Cavanagh B; Unger RE; Kirkpatrick CJ; O'Dea S; O'Brien FJ; Cryan SA Biomaterials; 2016 Apr; 85():111-27. PubMed ID: 26871888 [TBL] [Abstract][Full Text] [Related]
8. Hydrogel co-networks of gelatine methacrylate and poly(ethylene glycol) diacrylate sustain 3D functional in vitro models of intestinal mucosa. Vila A; Torras N; Castaño AG; García-Díaz M; Comelles J; Pérez-Berezo T; Corregidor C; Castaño Ó; Engel E; Fernández-Majada V; Martínez E Biofabrication; 2020 Feb; 12(2):025008. PubMed ID: 31805546 [TBL] [Abstract][Full Text] [Related]
9. The effect of electrospun polycaprolactone scaffold morphology on human kidney epithelial cells. Burton TP; Corcoran A; Callanan A Biomed Mater; 2017 Nov; 13(1):015006. PubMed ID: 29165317 [TBL] [Abstract][Full Text] [Related]
10. Production of Scaffolds Using Melt Electrospinning Writing and Cell Seeding. Bolle ECL; Nicdao D; Dalton PD; Dargaville TR Methods Mol Biol; 2021; 2147():111-124. PubMed ID: 32840814 [TBL] [Abstract][Full Text] [Related]
11. A simple and effective method for making multipotent/multilineage scaffolds with hydrophilic nature without any postmodification/treatment. Vaikkath D; Anitha R; Sumathy B; Nair PD Colloids Surf B Biointerfaces; 2016 May; 141():112-119. PubMed ID: 26848946 [TBL] [Abstract][Full Text] [Related]
12. Equine bronchial fibroblasts enhance proliferation and differentiation of primary equine bronchial epithelial cells co-cultured under air-liquid interface. Abs V; Bonicelli J; Kacza J; Zizzadoro C; Abraham G PLoS One; 2019; 14(11):e0225025. PubMed ID: 31721813 [TBL] [Abstract][Full Text] [Related]
14. Robust fabrication of electrospun-like polymer mats to direct cell behaviour. Ballester-Beltrán J; Lebourg M; Capella H; Diaz Lantada A; Salmerón-Sánchez M Biofabrication; 2014 Sep; 6(3):035009. PubMed ID: 24867823 [TBL] [Abstract][Full Text] [Related]
15. Three-dimensional polycaprolactone scaffold via needleless electrospinning promotes cell proliferation and infiltration. Li D; Wu T; He N; Wang J; Chen W; He L; Huang C; Ei-Hamshary HA; Al-Deyab SS; Ke Q; Mo X Colloids Surf B Biointerfaces; 2014 Sep; 121():432-43. PubMed ID: 24996758 [TBL] [Abstract][Full Text] [Related]
16. Co-culture cell-derived extracellular matrix loaded electrospun microfibrous scaffolds for bone tissue engineering. Carvalho MS; Silva JC; Udangawa RN; Cabral JMS; Ferreira FC; da Silva CL; Linhardt RJ; Vashishth D Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():479-490. PubMed ID: 30889723 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of three-dimensional nano, micro and micro/nano scaffolds of porous poly(lactic acid) by electrospinning and comparison of cell infiltration by Z-stacking/three-dimensional projection technique. Shalumon KT; Chennazhi KP; Tamura H; Kawahara K; Nair SV; Jayakumar R IET Nanobiotechnol; 2012 Mar; 6(1):16-25. PubMed ID: 22423866 [TBL] [Abstract][Full Text] [Related]
18. Engineered hypopharynx from coculture of epithelial cells and fibroblasts using poly(ester urethane) as substratum. Shen Z; Chen J; Kang C; Gong C; Zhu Y Biomed Res Int; 2013; 2013():138504. PubMed ID: 24455669 [TBL] [Abstract][Full Text] [Related]
19. The fabrication of double layer tubular vascular tissue engineering scaffold via coaxial electrospinning and its 3D cell coculture. Ye L; Cao J; Chen L; Geng X; Zhang AY; Guo LR; Gu YQ; Feng ZG J Biomed Mater Res A; 2015 Dec; 103(12):3863-71. PubMed ID: 26123627 [TBL] [Abstract][Full Text] [Related]
20. In Situ Biological Transmutation of Catalytic Lactic Acid Waste into Calcium Lactate in a Readily Processable Three-Dimensional Fibrillar Structure for Bone Tissue Engineering. Hwang TI; Kim JI; Lee J; Moon JY; Lee JC; Joshi MK; Park CH; Kim CS ACS Appl Mater Interfaces; 2020 Apr; 12(16):18197-18210. PubMed ID: 32153182 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]