BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 24925445)

  • 21. Loading induces site-specific increases in mineral content assessed by microcomputed tomography of the mouse tibia.
    Fritton JC; Myers ER; Wright TM; van der Meulen MC
    Bone; 2005 Jun; 36(6):1030-8. PubMed ID: 15878316
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cortical and trabecular bone adaptation to incremental load magnitudes using the mouse tibial axial compression loading model.
    Weatherholt AM; Fuchs RK; Warden SJ
    Bone; 2013 Jan; 52(1):372-9. PubMed ID: 23111313
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo tibial stiffness is maintained by whole bone morphology and cross-sectional geometry in growing female mice.
    Main RP; Lynch ME; van der Meulen MC
    J Biomech; 2010 Oct; 43(14):2689-94. PubMed ID: 20673665
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ex vivo determination of bone tissue strains for an in vivo mouse tibial loading model.
    Carriero A; Abela L; Pitsillides AA; Shefelbine SJ
    J Biomech; 2014 Jul; 47(10):2490-7. PubMed ID: 24835472
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bones' adaptive response to mechanical loading is essentially linear between the low strains associated with disuse and the high strains associated with the lamellar/woven bone transition.
    Sugiyama T; Meakin LB; Browne WJ; Galea GL; Price JS; Lanyon LE
    J Bone Miner Res; 2012 Aug; 27(8):1784-93. PubMed ID: 22431329
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of varus/valgus malalignment on bone strains in the proximal tibia after TKR: an explicit finite element study.
    Perillo-Marcone A; Taylor M
    J Biomech Eng; 2007 Feb; 129(1):1-11. PubMed ID: 17227092
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Validation of finite element models of the mouse tibia using digital volume correlation.
    Oliviero S; Giorgi M; Dall'Ara E
    J Mech Behav Biomed Mater; 2018 Oct; 86():172-184. PubMed ID: 29986291
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Constrained tibial vibration in mice: a method for studying the effects of vibrational loading of bone.
    Christiansen BA; Bayly PV; Silva MJ
    J Biomech Eng; 2008 Aug; 130(4):044502. PubMed ID: 18601464
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcriptional profiling of cortical versus cancellous bone from mechanically-loaded murine tibiae reveals differential gene expression.
    Kelly NH; Schimenti JC; Ross FP; van der Meulen MC
    Bone; 2016 May; 86():22-9. PubMed ID: 26876048
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tomography-Based Quantification of Regional Differences in Cortical Bone Surface Remodeling and Mechano-Response.
    Birkhold AI; Razi H; Duda GN; Checa S; Willie BM
    Calcif Tissue Int; 2017 Mar; 100(3):255-270. PubMed ID: 27999894
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aging diminishes lamellar and woven bone formation induced by tibial compression in adult C57BL/6.
    Holguin N; Brodt MD; Sanchez ME; Silva MJ
    Bone; 2014 Aug; 65():83-91. PubMed ID: 24836737
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using digital image correlation to determine bone surface strains during loading and after adaptation of the mouse tibia.
    Sztefek P; Vanleene M; Olsson R; Collinson R; Pitsillides AA; Shefelbine S
    J Biomech; 2010 Mar; 43(4):599-605. PubMed ID: 20005517
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computed-tomography-based finite-element models of long bones can accurately capture strain response to bending and torsion.
    Varghese B; Short D; Penmetsa R; Goswami T; Hangartner T
    J Biomech; 2011 Apr; 44(7):1374-9. PubMed ID: 21288523
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Separate modeling of cortical and trabecular bone offers little improvement in FE predictions of local structural stiffness at the proximal tibia.
    Hosseini Kalajahi SM; Nazemi SM; Johnston JD
    Comput Methods Biomech Biomed Engin; 2019 Dec; 22(16):1258-1268. PubMed ID: 31509022
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting cortical bone adaptation to axial loading in the mouse tibia.
    Pereira AF; Javaheri B; Pitsillides AA; Shefelbine SJ
    J R Soc Interface; 2015 Sep; 12(110):0590. PubMed ID: 26311315
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The longitudinal effects of ovariectomy on the morphometric, densitometric and mechanical properties in the murine tibia: A comparison between two mouse strains.
    Roberts BC; Giorgi M; Oliviero S; Wang N; Boudiffa M; Dall'Ara E
    Bone; 2019 Oct; 127():260-270. PubMed ID: 31254730
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of repeated in vivo microCT imaging on the properties of the mouse tibia.
    Oliviero S; Giorgi M; Laud PJ; Dall'Ara E
    PLoS One; 2019; 14(11):e0225127. PubMed ID: 31751367
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vivo axial loading of the mouse tibia.
    Melville KM; Robling AG; van der Meulen MC
    Methods Mol Biol; 2015; 1226():99-115. PubMed ID: 25331046
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The dependence between the strength and stiffness of cancellous and cortical bone tissue for tension and compression: extension of a unifying principle.
    Yeni YN; Dong XN; Fyhrie DP; Les CM
    Biomed Mater Eng; 2004; 14(3):303-10. PubMed ID: 15299242
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cortical bone adaptation response is region specific, but not peak load dependent: insights from
    Miller CJ; Pickering E; Martelli S; Dall'Ara E; Delisser P; Pivonka P
    Biomech Model Mechanobiol; 2024 Feb; 23(1):287-304. PubMed ID: 37851203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.