These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 24925682)

  • 1. Chemical space networks: a powerful new paradigm for the description of chemical space.
    Maggiora GM; Bajorath J
    J Comput Aided Mol Des; 2014 Aug; 28(8):795-802. PubMed ID: 24925682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical space visualization: transforming multidimensional chemical spaces into similarity-based molecular networks.
    de la Vega de León A; Bajorath J
    Future Med Chem; 2016 Sep; 8(14):1769-78. PubMed ID: 27572425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversity in medicinal chemistry space.
    Gorse AD
    Curr Top Med Chem; 2006; 6(1):3-18. PubMed ID: 16454754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular similarity measures.
    Maggiora GM; Shanmugasundaram V
    Methods Mol Biol; 2011; 672():39-100. PubMed ID: 20838964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Bayes affinity fingerprints" improve retrieval rates in virtual screening and define orthogonal bioactivity space: when are multitarget drugs a feasible concept?
    Bender A; Jenkins JL; Glick M; Deng Z; Nettles JH; Davies JW
    J Chem Inf Model; 2006; 46(6):2445-56. PubMed ID: 17125186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of chemical space networks on the basis of Tversky similarity.
    Wu M; Vogt M; Maggiora GM; Bajorath J
    J Comput Aided Mol Des; 2016 Jan; 30(1):1-12. PubMed ID: 26695392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lessons learned from the design of chemical space networks and opportunities for new applications.
    Vogt M; Stumpfe D; Maggiora GM; Bajorath J
    J Comput Aided Mol Des; 2016 Mar; 30(3):191-208. PubMed ID: 26945865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring sets of molecules from patents and relationships to other active compounds in chemical space networks.
    Kunimoto R; Bajorath J
    J Comput Aided Mol Des; 2017 Sep; 31(9):779-788. PubMed ID: 28871390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic mapping of R-group space enables the generation of an R-group replacement system for medicinal chemistry.
    Takeuchi K; Kunimoto R; Bajorath J
    Eur J Med Chem; 2021 Dec; 225():113771. PubMed ID: 34403977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of chemical space networks using a Tanimoto similarity variant based upon maximum common substructures.
    Zhang B; Vogt M; Maggiora GM; Bajorath J
    J Comput Aided Mol Des; 2015 Oct; 29(10):937-50. PubMed ID: 26419860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How diverse are diversity assessment methods? A comparative analysis and benchmarking of molecular descriptor space.
    Koutsoukas A; Paricharak S; Galloway WR; Spring DR; Ijzerman AP; Glen RC; Marcus D; Bender A
    J Chem Inf Model; 2014 Jan; 54(1):230-42. PubMed ID: 24289493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Connected Subgraph Fingerprints: Representing Molecules Using Exhaustive Subgraph Enumeration.
    Bellmann L; Penner P; Rarey M
    J Chem Inf Model; 2019 Nov; 59(11):4625-4635. PubMed ID: 31652055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rendezvous in chemical space? Comparing the small molecule compound libraries of Bayer and Schering.
    Schamberger J; Grimm M; Steinmeyer A; Hillisch A
    Drug Discov Today; 2011 Jul; 16(13-14):636-41. PubMed ID: 21554978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convolutional neural network based on SMILES representation of compounds for detecting chemical motif.
    Hirohara M; Saito Y; Koda Y; Sato K; Sakakibara Y
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):526. PubMed ID: 30598075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global mapping of pharmacological space.
    Paolini GV; Shapland RH; van Hoorn WP; Mason JS; Hopkins AL
    Nat Biotechnol; 2006 Jul; 24(7):805-15. PubMed ID: 16841068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitatively integrating molecular structure and bioactivity profile evidence into drug-target relationship analysis.
    Xu T; Zhu R; Liu Q; Cao Z
    BMC Bioinformatics; 2012 May; 13():75. PubMed ID: 22559876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global Assessment of Substituents on the Basis of Analogue Series.
    Takeuchi K; Kunimoto R; Bajorath J
    J Med Chem; 2020 Dec; 63(23):15013-15020. PubMed ID: 33253557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting drug target interactions using meta-path-based semantic network analysis.
    Fu G; Ding Y; Seal A; Chen B; Sun Y; Bolton E
    BMC Bioinformatics; 2016 Apr; 17():160. PubMed ID: 27071755
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.