BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 24926076)

  • 21. Neurovascular coupling during optogenetic functional activation: Local and remote stimulus-response characteristics, and uncoupling by spreading depression.
    Böhm M; Chung DY; Gómez CA; Qin T; Takizawa T; Sadeghian H; Sugimoto K; Sakadžić S; Yaseen MA; Ayata C
    J Cereb Blood Flow Metab; 2020 Apr; 40(4):808-822. PubMed ID: 31063009
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unitary TRPV3 channel Ca2+ influx events elicit endothelium-dependent dilation of cerebral parenchymal arterioles.
    Pires PW; Sullivan MN; Pritchard HA; Robinson JJ; Earley S
    Am J Physiol Heart Circ Physiol; 2015 Dec; 309(12):H2031-41. PubMed ID: 26453324
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanical restriction of intracortical vessel dilation by brain tissue sculpts the hemodynamic response.
    Gao YR; Greene SE; Drew PJ
    Neuroimage; 2015 Jul; 115():162-76. PubMed ID: 25953632
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anesthesia and the quantitative evaluation of neurovascular coupling.
    Masamoto K; Kanno I
    J Cereb Blood Flow Metab; 2012 Jul; 32(7):1233-47. PubMed ID: 22510601
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of endothelium in hyperemia during cortical spreading depression (CSD) in the rat.
    Shimizu K; Miller AW; Erdös B; Bari F; Busija DW
    Brain Res; 2002 Feb; 928(1-2):40-9. PubMed ID: 11844470
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Systemic blood pressure alters cortical blood flow and neurovascular coupling during nociceptive processing in the primary somatosensory cortex of the rat.
    Uchida S; Bois S; Guillemot JP; Leblond H; Piché M
    Neuroscience; 2017 Feb; 343():250-259. PubMed ID: 27998779
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct, intraoperative observation of ~0.1 Hz hemodynamic oscillations in awake human cortex: implications for fMRI.
    Rayshubskiy A; Wojtasiewicz TJ; Mikell CB; Bouchard MB; Timerman D; Youngerman BE; McGovern RA; Otten ML; Canoll P; McKhann GM; Hillman EM
    Neuroimage; 2014 Feb; 87():323-31. PubMed ID: 24185013
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ion channel networks in the control of cerebral blood flow.
    Longden TA; Hill-Eubanks DC; Nelson MT
    J Cereb Blood Flow Metab; 2016 Mar; 36(3):492-512. PubMed ID: 26661232
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The resting-state neurovascular coupling relationship: rapid changes in spontaneous neural activity in the somatosensory cortex are associated with haemodynamic fluctuations that resemble stimulus-evoked haemodynamics.
    Bruyns-Haylett M; Harris S; Boorman L; Zheng Y; Berwick J; Jones M
    Eur J Neurosci; 2013 Sep; 38(6):2902-16. PubMed ID: 23841797
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of astrocytes in cerebrovascular regulation.
    Koehler RC; Gebremedhin D; Harder DR
    J Appl Physiol (1985); 2006 Jan; 100(1):307-17. PubMed ID: 16357084
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational analysis of NIRS and BOLD signal from neurovascular coupling with three neuron-system feedforward inhibition network.
    Bandyopadhyay A; Sharma G; Roy Chowdhury S
    J Theor Biol; 2020 Aug; 498():110297. PubMed ID: 32371007
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Linking brain vascular physiology to hemodynamic response in ultra-high field MRI.
    Uludağ K; Blinder P
    Neuroimage; 2018 Mar; 168():279-295. PubMed ID: 28254456
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-resolution in vivo imaging of rhesus cerebral cortex with ultrafast portable photoacoustic microscopy.
    Qin W; Gan Q; Yang L; Wang Y; Qi W; Ke B; Xi L
    Neuroimage; 2021 Sep; 238():118260. PubMed ID: 34118393
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling the impact of neurovascular coupling impairments on BOLD-based functional connectivity at rest.
    Archila-Meléndez ME; Sorg C; Preibisch C
    Neuroimage; 2020 Sep; 218():116871. PubMed ID: 32335261
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tonic Local Brain Blood Flow Control by Astrocytes Independent of Phasic Neurovascular Coupling.
    Rosenegger DG; Tran CH; Wamsteeker Cusulin JI; Gordon GR
    J Neurosci; 2015 Sep; 35(39):13463-74. PubMed ID: 26424891
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Submillimeter-resolution fMRI: Toward understanding local neural processing.
    Fukuda M; Poplawsky AJ; Kim SG
    Prog Brain Res; 2016; 225():123-52. PubMed ID: 27130414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Brain hemodynamic changes mediated by dopamine receptors: Role of the cerebral microvasculature in dopamine-mediated neurovascular coupling.
    Choi JK; Chen YI; Hamel E; Jenkins BG
    Neuroimage; 2006 Apr; 30(3):700-12. PubMed ID: 16459104
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The relationship between vascular wall shear stress and flow-mediated dilation: endothelial function assessed by phase-contrast magnetic resonance angiography.
    Silber HA; Bluemke DA; Ouyang P; Du YP; Post WS; Lima JA
    J Am Coll Cardiol; 2001 Dec; 38(7):1859-65. PubMed ID: 11738285
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Astrocyte regulation of cerebral vascular tone.
    Filosa JA; Iddings JA
    Am J Physiol Heart Circ Physiol; 2013 Sep; 305(5):H609-19. PubMed ID: 23792684
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.