These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 24926076)

  • 21. Unitary TRPV3 channel Ca2+ influx events elicit endothelium-dependent dilation of cerebral parenchymal arterioles.
    Pires PW; Sullivan MN; Pritchard HA; Robinson JJ; Earley S
    Am J Physiol Heart Circ Physiol; 2015 Dec; 309(12):H2031-41. PubMed ID: 26453324
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanical restriction of intracortical vessel dilation by brain tissue sculpts the hemodynamic response.
    Gao YR; Greene SE; Drew PJ
    Neuroimage; 2015 Jul; 115():162-76. PubMed ID: 25953632
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anesthesia and the quantitative evaluation of neurovascular coupling.
    Masamoto K; Kanno I
    J Cereb Blood Flow Metab; 2012 Jul; 32(7):1233-47. PubMed ID: 22510601
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of endothelium in hyperemia during cortical spreading depression (CSD) in the rat.
    Shimizu K; Miller AW; Erdös B; Bari F; Busija DW
    Brain Res; 2002 Feb; 928(1-2):40-9. PubMed ID: 11844470
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Systemic blood pressure alters cortical blood flow and neurovascular coupling during nociceptive processing in the primary somatosensory cortex of the rat.
    Uchida S; Bois S; Guillemot JP; Leblond H; Piché M
    Neuroscience; 2017 Feb; 343():250-259. PubMed ID: 27998779
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct, intraoperative observation of ~0.1 Hz hemodynamic oscillations in awake human cortex: implications for fMRI.
    Rayshubskiy A; Wojtasiewicz TJ; Mikell CB; Bouchard MB; Timerman D; Youngerman BE; McGovern RA; Otten ML; Canoll P; McKhann GM; Hillman EM
    Neuroimage; 2014 Feb; 87():323-31. PubMed ID: 24185013
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ion channel networks in the control of cerebral blood flow.
    Longden TA; Hill-Eubanks DC; Nelson MT
    J Cereb Blood Flow Metab; 2016 Mar; 36(3):492-512. PubMed ID: 26661232
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The resting-state neurovascular coupling relationship: rapid changes in spontaneous neural activity in the somatosensory cortex are associated with haemodynamic fluctuations that resemble stimulus-evoked haemodynamics.
    Bruyns-Haylett M; Harris S; Boorman L; Zheng Y; Berwick J; Jones M
    Eur J Neurosci; 2013 Sep; 38(6):2902-16. PubMed ID: 23841797
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of astrocytes in cerebrovascular regulation.
    Koehler RC; Gebremedhin D; Harder DR
    J Appl Physiol (1985); 2006 Jan; 100(1):307-17. PubMed ID: 16357084
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational analysis of NIRS and BOLD signal from neurovascular coupling with three neuron-system feedforward inhibition network.
    Bandyopadhyay A; Sharma G; Roy Chowdhury S
    J Theor Biol; 2020 Aug; 498():110297. PubMed ID: 32371007
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Serotonergic regulation of cortical neurovascular coupling and hemodynamics upon awakening from sleep in mice.
    Natsubori A; Kwon S; Honda Y; Kojima T; Karashima A; Masamoto K; Honda M
    J Cereb Blood Flow Metab; 2024 Sep; 44(9):1591-1607. PubMed ID: 38477254
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Linking brain vascular physiology to hemodynamic response in ultra-high field MRI.
    Uludağ K; Blinder P
    Neuroimage; 2018 Mar; 168():279-295. PubMed ID: 28254456
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-resolution in vivo imaging of rhesus cerebral cortex with ultrafast portable photoacoustic microscopy.
    Qin W; Gan Q; Yang L; Wang Y; Qi W; Ke B; Xi L
    Neuroimage; 2021 Sep; 238():118260. PubMed ID: 34118393
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling the impact of neurovascular coupling impairments on BOLD-based functional connectivity at rest.
    Archila-Meléndez ME; Sorg C; Preibisch C
    Neuroimage; 2020 Sep; 218():116871. PubMed ID: 32335261
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tonic Local Brain Blood Flow Control by Astrocytes Independent of Phasic Neurovascular Coupling.
    Rosenegger DG; Tran CH; Wamsteeker Cusulin JI; Gordon GR
    J Neurosci; 2015 Sep; 35(39):13463-74. PubMed ID: 26424891
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Submillimeter-resolution fMRI: Toward understanding local neural processing.
    Fukuda M; Poplawsky AJ; Kim SG
    Prog Brain Res; 2016; 225():123-52. PubMed ID: 27130414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Brain hemodynamic changes mediated by dopamine receptors: Role of the cerebral microvasculature in dopamine-mediated neurovascular coupling.
    Choi JK; Chen YI; Hamel E; Jenkins BG
    Neuroimage; 2006 Apr; 30(3):700-12. PubMed ID: 16459104
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The relationship between vascular wall shear stress and flow-mediated dilation: endothelial function assessed by phase-contrast magnetic resonance angiography.
    Silber HA; Bluemke DA; Ouyang P; Du YP; Post WS; Lima JA
    J Am Coll Cardiol; 2001 Dec; 38(7):1859-65. PubMed ID: 11738285
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Astrocyte regulation of cerebral vascular tone.
    Filosa JA; Iddings JA
    Am J Physiol Heart Circ Physiol; 2013 Sep; 305(5):H609-19. PubMed ID: 23792684
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.