BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 24926285)

  • 21. GPR43/FFA2: physiopathological relevance and therapeutic prospects.
    Bindels LB; Dewulf EM; Delzenne NM
    Trends Pharmacol Sci; 2013 Apr; 34(4):226-32. PubMed ID: 23489932
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Short-Chain Fatty Acid and FFAR2 Activation - A New Option for Treating Infections?
    Schlatterer K; Peschel A; Kretschmer D
    Front Cell Infect Microbiol; 2021; 11():785833. PubMed ID: 34926327
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Short-chain fatty acid receptors and gut microbiota as therapeutic targets in metabolic, immune, and neurological diseases.
    Ikeda T; Nishida A; Yamano M; Kimura I
    Pharmacol Ther; 2022 Nov; 239():108273. PubMed ID: 36057320
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Short-Chain Fatty Acids, Maternal Microbiota and Metabolism in Pregnancy.
    Ziętek M; Celewicz Z; Szczuko M
    Nutrients; 2021 Apr; 13(4):. PubMed ID: 33918804
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gut microbial metabolite short-chain fatty acids and obesity.
    Li X; Shimizu Y; Kimura I
    Biosci Microbiota Food Health; 2017; 36(4):135-140. PubMed ID: 29038768
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The impact of short-chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon.
    Christiansen CB; Gabe MBN; Svendsen B; Dragsted LO; Rosenkilde MM; Holst JJ
    Am J Physiol Gastrointest Liver Physiol; 2018 Jul; 315(1):G53-G65. PubMed ID: 29494208
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Free Fatty Acid Receptors 2 and 3 as Microbial Metabolite Sensors to Shape Host Health: Pharmacophysiological View.
    Mishra SP; Karunakar P; Taraphder S; Yadav H
    Biomedicines; 2020 Jun; 8(6):. PubMed ID: 32521775
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Short Chain Fatty Acids Enhance Expression and Activity of the Umami Taste Receptor in Enteroendocrine Cells via a Gα
    Shackley M; Ma Y; Tate EW; Brown AJH; Frost G; Hanyaloglu AC
    Front Nutr; 2020; 7():568991. PubMed ID: 33195366
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Free fatty acid receptors as therapeutic targets for the treatment of diabetes.
    Ichimura A; Hasegawa S; Kasubuchi M; Kimura I
    Front Pharmacol; 2014; 5():236. PubMed ID: 25414667
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Free Fatty Acid Receptors (FFARs) in Adipose: Physiological Role and Therapeutic Outlook.
    Al Mahri S; Malik SS; Al Ibrahim M; Haji E; Dairi G; Mohammad S
    Cells; 2022 Feb; 11(4):. PubMed ID: 35203397
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids.
    Lukovac S; Belzer C; Pellis L; Keijser BJ; de Vos WM; Montijn RC; Roeselers G
    mBio; 2014 Aug; 5(4):. PubMed ID: 25118238
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation.
    Le Poul E; Loison C; Struyf S; Springael JY; Lannoy V; Decobecq ME; Brezillon S; Dupriez V; Vassart G; Van Damme J; Parmentier M; Detheux M
    J Biol Chem; 2003 Jul; 278(28):25481-9. PubMed ID: 12711604
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An essential role of Ffar2 (Gpr43) in dietary fibre-mediated promotion of healthy composition of gut microbiota and suppression of intestinal carcinogenesis.
    Sivaprakasam S; Gurav A; Paschall AV; Coe GL; Chaudhary K; Cai Y; Kolhe R; Martin P; Browning D; Huang L; Shi H; Sifuentes H; Vijay-Kumar M; Thompson SA; Munn DH; Mellor A; McGaha TL; Shiao P; Cutler CW; Liu K; Ganapathy V; Li H; Singh N
    Oncogenesis; 2016 Jun; 5(6):e238. PubMed ID: 27348268
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Short-chain fatty acid receptor and its contribution to glucagon-like peptide-1 release.
    Kaji I; Karaki S; Kuwahara A
    Digestion; 2014; 89(1):31-6. PubMed ID: 24458110
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of Energy Homeostasis by GPR41.
    Inoue D; Tsujimoto G; Kimura I
    Front Endocrinol (Lausanne); 2014; 5():81. PubMed ID: 24904531
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Short-chain fatty acids in diseases.
    Zhang D; Jian YP; Zhang YN; Li Y; Gu LT; Sun HH; Liu MD; Zhou HL; Wang YS; Xu ZX
    Cell Commun Signal; 2023 Aug; 21(1):212. PubMed ID: 37596634
    [TBL] [Abstract][Full Text] [Related]  

  • 37. G-protein-coupled receptor for short-chain fatty acids suppresses colon cancer.
    Tang Y; Chen Y; Jiang H; Robbins GT; Nie D
    Int J Cancer; 2011 Feb; 128(4):847-56. PubMed ID: 20979106
    [TBL] [Abstract][Full Text] [Related]  

  • 38. GPR43 Potentiates β-Cell Function in Obesity.
    McNelis JC; Lee YS; Mayoral R; van der Kant R; Johnson AM; Wollam J; Olefsky JM
    Diabetes; 2015 Sep; 64(9):3203-17. PubMed ID: 26023106
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Short-Chain Fatty Acids Ameliorate Diabetic Nephropathy via GPR43-Mediated Inhibition of Oxidative Stress and NF-
    Huang W; Man Y; Gao C; Zhou L; Gu J; Xu H; Wan Q; Long Y; Chai L; Xu Y; Xu Y
    Oxid Med Cell Longev; 2020; 2020():4074832. PubMed ID: 32831998
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The relationship between the effects of short-chain fatty acids on intestinal motility in vitro and GPR43 receptor activation.
    Dass NB; John AK; Bassil AK; Crumbley CW; Shehee WR; Maurio FP; Moore GB; Taylor CM; Sanger GJ
    Neurogastroenterol Motil; 2007 Jan; 19(1):66-74. PubMed ID: 17187590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.