BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

558 related articles for article (PubMed ID: 24926851)

  • 21. Three Principles of Diversity-Generating Biosynthesis.
    Gu W; Schmidt EW
    Acc Chem Res; 2017 Oct; 50(10):2569-2576. PubMed ID: 28891639
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic perturbation to enhance polyketide and nonribosomal peptide antibiotic production using triclosan and ribosome-targeting drugs.
    Tanaka Y; Izawa M; Hiraga Y; Misaki Y; Watanabe T; Ochi K
    Appl Microbiol Biotechnol; 2017 Jun; 101(11):4417-4431. PubMed ID: 28293709
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biosynthesis of 3-thia-α-amino acids on a carrier peptide.
    Yu Y; van der Donk WA
    Proc Natl Acad Sci U S A; 2022 Jul; 119(29):e2205285119. PubMed ID: 35787182
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Radical S-adenosyl methionine epimerases: regioselective introduction of diverse D-amino acid patterns into peptide natural products.
    Morinaka BI; Vagstad AL; Helf MJ; Gugger M; Kegler C; Freeman MF; Bode HB; Piel J
    Angew Chem Int Ed Engl; 2014 Aug; 53(32):8503-7. PubMed ID: 24943072
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chapter 15. Plasmid-borne gene cluster assemblage and heterologous biosynthesis of nonribosomal peptides in Escherichia coli.
    Watanabe K; Praseuth AP; Praseuth MB; Hotta K
    Methods Enzymol; 2009; 458():379-99. PubMed ID: 19374991
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of a scaffold peptide in the biosynthesis of amino acid-derived natural products.
    Ting CP; Funk MA; Halaby SL; Zhang Z; Gonen T; van der Donk WA
    Science; 2019 Jul; 365(6450):280-284. PubMed ID: 31320540
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PKS and NRPS release mechanisms.
    Du L; Lou L
    Nat Prod Rep; 2010 Feb; 27(2):255-78. PubMed ID: 20111804
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ribosomal Synthesis of Macrocyclic Peptides with β
    Adaligil E; Song A; Hallenbeck KK; Cunningham CN; Fairbrother WJ
    ACS Chem Biol; 2021 Jun; 16(6):1011-1018. PubMed ID: 34008946
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure guided approaches toward exploiting and manipulating nonribosomal peptide and polyketide biosynthetic pathways.
    Condurso HL; Bruner SD
    Curr Opin Chem Biol; 2012 Apr; 16(1-2):162-9. PubMed ID: 22369855
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Explorations of fungal biosynthesis of reduced polyketides - a personal viewpoint.
    Vederas JC
    Nat Prod Rep; 2014 Oct; 31(10):1253-9. PubMed ID: 25058153
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring the biosynthesis of natural products and their inherent suitability for the rational design of desirable compounds through genetic engineering.
    Watanabe K
    Biosci Biotechnol Biochem; 2008 Oct; 72(10):2491-506. PubMed ID: 18838806
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering Biosynthesis of Non-ribosomal Peptides and Polyketides by Directed Evolution.
    Rui Z; Zhang W
    Curr Top Med Chem; 2016; 16(15):1755-62. PubMed ID: 26456467
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design of a "new motif" with beta-amino acids and alpha-aminoxy acids: synthesis of hybrid peptides with 12/10-helix.
    Sharma GV; Manohar V; Dutta SK; Subash V; Kunwar AC
    J Org Chem; 2008 May; 73(10):3689-98. PubMed ID: 18416577
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A unique amino transfer mechanism for constructing the β-amino fatty acid starter unit in the biosynthesis of the macrolactam antibiotic cremimycin.
    Amagai K; Takaku R; Kudo F; Eguchi T
    Chembiochem; 2013 Oct; 14(15):1998-2006. PubMed ID: 24014395
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Peptides containing β-amino acid patterns: challenges and successes in medicinal chemistry.
    Cabrele C; Martinek TA; Reiser O; Berlicki Ł
    J Med Chem; 2014 Dec; 57(23):9718-39. PubMed ID: 25207470
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Glycosyl isomerization based on the biosynthesis of natural-product sugar from microorganism].
    Sun W; Li HF; Chen J; Wang GJ; Yang ZY
    Yao Xue Xue Bao; 2013 Feb; 48(2):179-86. PubMed ID: 23672013
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polyketide and nonribosomal peptide retro-biosynthesis and global gene cluster matching.
    Dejong CA; Chen GM; Li H; Johnston CW; Edwards MR; Rees PN; Skinnider MA; Webster AL; Magarvey NA
    Nat Chem Biol; 2016 Dec; 12(12):1007-1014. PubMed ID: 27694801
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Natural and engineered biosynthesis of fluorinated natural products.
    Walker MC; Chang MC
    Chem Soc Rev; 2014 Sep; 43(18):6527-36. PubMed ID: 24776946
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chain release mechanisms in polyketide and non-ribosomal peptide biosynthesis.
    Little RF; Hertweck C
    Nat Prod Rep; 2022 Jan; 39(1):163-205. PubMed ID: 34622896
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chapter 13. Nonribosomal peptide synthetases mechanistic and structural aspects of essential domains.
    Marahiel MA; Essen LO
    Methods Enzymol; 2009; 458():337-51. PubMed ID: 19374989
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.