These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 24926877)

  • 1. The effect of silver nanoparticles on seasonal change in arctic tundra bacterial and fungal assemblages.
    Kumar N; Palmer GR; Shah V; Walker VK
    PLoS One; 2014; 9(6):e99953. PubMed ID: 24926877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perturbation of an arctic soil microbial community by metal nanoparticles.
    Kumar N; Shah V; Walker VK
    J Hazard Mater; 2011 Jun; 190(1-3):816-22. PubMed ID: 21546158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of silver nanoparticles on wastewater biofilms.
    Sheng Z; Liu Y
    Water Res; 2011 Nov; 45(18):6039-50. PubMed ID: 21940033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Green synthesis of curcumin conjugated nanosilver for the applications in nucleic acid sensing and anti-bacterial activity.
    El Khoury E; Abiad M; Kassaify ZG; Patra D
    Colloids Surf B Biointerfaces; 2015 Mar; 127():274-80. PubMed ID: 25687098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review on biosynthesis of silver nanoparticles and their biocidal properties.
    Siddiqi KS; Husen A; Rao RAK
    J Nanobiotechnology; 2018 Feb; 16(1):14. PubMed ID: 29452593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of a nanoparticle mixture on an arctic soil community.
    Kumar N; Shah V; Walker VK
    Environ Toxicol Chem; 2012 Jan; 31(1):131-5. PubMed ID: 22020968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial, Antioxidant and Larvicidal Activities of Spherical Silver Nanoparticles Synthesized by Endophytic Streptomyces spp.
    Fouda A; Hassan SE; Abdo AM; El-Gamal MS
    Biol Trace Elem Res; 2020 Jun; 195(2):707-724. PubMed ID: 31486967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biogenic synthesis of silver nanoparticles using Gliocladium deliquescens and their application as household sponge disinfectant.
    Fathy RM; Salem MSE; Mahfouz AY
    Biol Trace Elem Res; 2020 Aug; 196(2):662-678. PubMed ID: 31808109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of silver nanoparticle contamination on the genetic diversity of natural bacterial assemblages in estuarine sediments.
    Bradford A; Handy RD; Readman JW; Atfield A; Mühling M
    Environ Sci Technol; 2009 Jun; 43(12):4530-6. PubMed ID: 19603673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silver Nanoparticles Complexed with Bovine Submaxillary Mucin Possess Strong Antibacterial Activity and Protect against Seedling Infection.
    Makarovsky D; Fadeev L; Salam BB; Zelinger E; Matan O; Inbar J; Jurkevitch E; Gozin M; Burdman S
    Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29180363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of protecting ligands on surface structure and antibacterial activity of silver nanoparticles.
    Padmos JD; Boudreau RT; Weaver DF; Zhang P
    Langmuir; 2015 Mar; 31(12):3745-52. PubMed ID: 25773131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Antimicrobial Properties of Silver Nanoparticles in Bacillus subtilis Are Mediated by Released Ag+ Ions.
    Hsueh YH; Lin KS; Ke WJ; Hsieh CT; Chiang CL; Tzou DY; Liu ST
    PLoS One; 2015; 10(12):e0144306. PubMed ID: 26669836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can low concentrations of metal oxide and Ag loaded metal oxide nanoparticles pose a risk to stream plant litter microbial decomposers?
    Jain A; Kumar S; Seena S
    Sci Total Environ; 2019 Feb; 653():930-937. PubMed ID: 30759618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced antibacterial efficacy of silver nanoparticles immobilized in a chitosan nanocarrier.
    Sharma S
    Int J Biol Macromol; 2017 Nov; 104(Pt B):1740-1745. PubMed ID: 28736042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska.
    Morgado LN; Semenova TA; Welker JM; Walker MD; Smets E; Geml J
    Glob Chang Biol; 2015 Feb; 21(2):959-72. PubMed ID: 25156129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth.
    Choi O; Deng KK; Kim NJ; Ross L; Surampalli RY; Hu Z
    Water Res; 2008 Jun; 42(12):3066-74. PubMed ID: 18359055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic assisted synthesis of silver nanoparticle-chitosan composite microparticles for antibacterial applications.
    Yang CH; Wang LS; Chen SY; Huang MC; Li YH; Lin YC; Chen PF; Shaw JF; Huang KS
    Int J Pharm; 2016 Aug; 510(2):493-500. PubMed ID: 26780124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced dissolution of silver nanoparticles in a physical mixture with platinum nanoparticles based on the sacrificial anode effect.
    Breisch M; Loza K; Pappert K; Rostek A; Rurainsky C; Tschulik K; Heggen M; Epple M; Tiller JC; Schildhauer TA; Köller M; Sengstock C
    Nanotechnology; 2020 Jan; 31(5):055703. PubMed ID: 31618711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Particle-cell contact enhances antibacterial activity of silver nanoparticles.
    Bondarenko O; Ivask A; Käkinen A; Kurvet I; Kahru A
    PLoS One; 2013; 8(5):e64060. PubMed ID: 23737965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast response of fungal and prokaryotic communities to climate change manipulation in two contrasting tundra soils.
    Voříšková J; Elberling B; Priemé A
    Environ Microbiome; 2019 Sep; 14(1):6. PubMed ID: 33902718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.